Microwave-Hydrothermal Synthesis of Nanostructured Zinc-Copper Gallates

Zinc gallate is an important semiconductor for manifold applications, e.g. in field emission displays or as a photocatalyst for water splitting. In addition to these interesting properties, zinc gallate is also an excellent matrix material that can be furthermore tuned through the incorporation of guest cations to form functional solid solutions with new optical and catalytic properties. We present a convenient microwave-hydrothermal synthesis of nanostructured Cu2+-substituted ZnGa2O4 spinels and their characterization with respect to morphology, chemical composition, structural, magnetic and optical properties. The microwave-based approach offers a straightforward and one-step access to nanostructured zinc gallate-based materials and related compounds as a new preparative advantage. As the properties of mixed spinel-based solid solutions strongly depend on the distribution of the guest ions between the different lattice sites, we have employed a wide range of analytical techniques to investigate the physico-chemical properties of the obtained copper-containing zinc gallate materials. The element specific EXAFS analysis at the Cu K- and Zn K-edge shows a difference in the coordination environments with Zn mostly situated on the tetrahedral sites of the spinel lattice whereas Cu is located on the octahedral sites of the nanostructured ZnGa2O4:Cu2+ materials.

[1]  M. Behrens Meso- and nano-structuring of industrial Cu/ZnO/(Al2O3) catalysts , 2009 .

[2]  A. Roy,et al.  Optical emission spectra of chromium doped nanocrystalline zinc gallate , 2009 .

[3]  S. N. Kosolobov,et al.  Long term operation of high quantum efficiency GaAs(Cs,O) photocathodes using multiple recleaning by atomic hydrogen , 2009 .

[4]  Junying Zhang,et al.  Photocatalytic degradation of methylene blue by ZnGa2O4 thin films , 2009 .

[5]  P. Zhu,et al.  High‐performance HTLcs‐derived CuZnAl catalysts for hydrogen production via methanol steam reforming , 2009 .

[6]  Jianguo Zhu,et al.  Synthesis of ZnGa2O4 nanowires with β-Ga2O3 templates and its photoluminescence performance , 2009 .

[7]  Z. Li,et al.  Ternary Wide Band Gap p-Block Metal Semiconductor ZnGa2O4 for Photocatalytic Benzene Degradation , 2008 .

[8]  N. Stock,et al.  High-throughput and microwave investigation of rare earth phosphonatoethanesulfonates—Ln(O3P–C2H4–SO3) (Ln=Ho, Er, Tm, Yb, Lu, Y) , 2008 .

[9]  J. C. Losilla,et al.  Microwave synthesis of gallium zinc phosphate NTHU-4 , 2008 .

[10]  Jingwei Zhang,et al.  Microwave-Assisted Synthesis of Various ZnO Hierarchical Nanostructures: Effects of Heating Parameters of Microwave Oven , 2008 .

[11]  J. Grunwaldt,et al.  Hydrothermal Formation of W/Mo-Oxides: A Multidisciplinary Study of Growth and Shape , 2008 .

[12]  Xitian Zhang,et al.  Synthesis of octahedral ZnGa2O4 particles and their field-emission properties , 2008 .

[13]  T. Woike,et al.  X-ray absorption spectroscopy study of valence and site occupation of copper inLiNbO3:Cu , 2008 .

[14]  C. Feldmann,et al.  Ionic liquid based approach to nanoscale functional materials , 2008 .

[15]  Junying Zhang,et al.  Synthesis and photoluminescent properties of Eu3+-doped ZnGa2O4 nanophosphors , 2008 .

[16]  Y. Bando,et al.  Ga‐Doped ZnS Nanowires as Precursors for ZnO/ZnGa2O4 Nanotubes , 2008 .

[17]  L. Zou,et al.  Single-crystalline ZnGa2O4 spinel phosphor via a single-source inorganic precursor route. , 2008, Inorganic chemistry.

[18]  A. Gedanken,et al.  Investigations on the Structural, Morphological, Electrical, and Magnetic Properties of CuFe2O4−NiO Nanocomposites , 2008 .

[19]  Frank E. Osterloh,et al.  Inorganic Materials as Catalysts for Photochemical Splitting of Water , 2008 .

[20]  M. Antonietti,et al.  Nonaqueous synthesis of colloidal ZnGa2O4 nanocrystals and their photolinninescence properties , 2007 .

[21]  A. Demourgues,et al.  Defects in divided zinc-copper aluminate spinels: structural features and optical absorption properties. , 2007, Inorganic chemistry.

[22]  Qingtao Zhou,et al.  Self-Assembled Catalyst Growth and Optical Properties of Single-Crystalline ZnGa2O4 Nanowires , 2007 .

[23]  A. Demourgues,et al.  Steric and Electronic Effects Relating to the Cu2+ Jahn−Teller Distortion in Zn1-xCuxAl2O4 Spinels§ , 2007 .

[24]  C. G. Kim,et al.  Combining thermolysis of molecular precursor with sol-gel process to zinc gallate nanoparticles , 2007 .

[25]  D. Sheptyakov,et al.  Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates , 2007 .

[26]  J. C. van den Heuvel,et al.  Highly mixed phases in ball-milled Cu/ZnO catalysts: an EXAFS and XANES study. , 2006, The journal of physical chemistry. B.

[27]  H. Park,et al.  First applicability of ZnGa2O4 : Ge4+, Li+, Mn2+ phosphor for a plasma display panel , 2006 .

[28]  Younian Liu,et al.  Hydrothermal synthesis and characterization of ZnGa2O4 phosphors , 2006 .

[29]  C. Näther,et al.  Extending the time: solvothermal syntheses, crystal structures, and properties of two non-isostructural thioantimonates with the composition [Mn(tren)]Sb2S4. , 2006, Inorganic chemistry.

[30]  R. Valentí,et al.  Effects of Fe substitution on the electronic, transport, and magnetic properties of ZnGa2O4: A systematic ab initio study , 2006, cond-mat/0601226.

[31]  S. Komarneni,et al.  Rapid Microwave–Hydrothermal Synthesis of Anatase Form of Titanium Dioxide , 2005 .

[32]  M. Jayaraj,et al.  Pulsed laser deposition of ZnGa2O4 phosphor films , 2005 .

[33]  Jeunghee Park,et al.  Helical structure of single-crystalline ZnGa2O4 nanowires. , 2005, Journal of the American Chemical Society.

[34]  Detlef Günther,et al.  Solid sample analysis using laser ablation inductively coupled plasma mass spectrometry , 2005 .

[35]  J. F. Cordaro,et al.  Optical Properties of Zinc Aluminate, Zinc Gallate, and Zinc Aluminogallate Spinels , 2005 .

[36]  R. Valent'i,et al.  Ferromagnetism in the Fe-substituted spinel semiconductor ZnGa2O4 , 2004, cond-mat/0412530.

[37]  G. Neri,et al.  Non-aqueous routes to crystalline metal oxide nanoparticles: Formation mechanisms and applications , 2005 .

[38]  M. Inagaki,et al.  Preparation of ZnGa2O4 Spinel Fine Particles by the Hydrothermal Method , 2004 .

[39]  M. Hirano,et al.  Hydrothermal Synthesis and Low-Temperature Sintering of Zinc Gallate Spinel Fine Particles , 2004 .

[40]  Hong-Lee Park,et al.  Optical and structural properties of nanosized ZnGa2O4:Cr3+ phosphor , 2004 .

[41]  S. Han,et al.  Energy transfer among three luminescent centers in full-color emitting ZnGa2O4:Mn2+, Cr3+ phosphors , 2004 .

[42]  Yongxiang Li,et al.  Low-temperature synthesis of nanocrystalline ZnGa2O4:Tb3+ phosphors via the Pechini method , 2004 .

[43]  J. Rao,et al.  EPR, luminescence and IR studies of Mn activated ZnGa , 2004 .

[44]  Jai-koo Park,et al.  Optical and electrical properties of ZnGa2O4/Mn2+ powder electroluminescent device , 2004 .

[45]  T. W. Kim,et al.  The origin of emission color of reduced and oxidized ZnGa2O4 phosphors , 2004 .

[46]  N. Saito,et al.  Photocatalysis for Water Decomposition by RuO2-Dispersed ZnGa2O4 with d10 Configuration , 2002 .

[47]  Ram Seshadri,et al.  Oxide and chalcogenide nanoparticles from hydrothermal/solvothermal reactions , 2002 .

[48]  Reinhard Nesper,et al.  Oxidic nanotubes and nanorods--anisotropic modules for a future nanotechnology. , 2002, Angewandte Chemie.

[49]  S. Komarneni,et al.  Nanophase materials by a novel microwave-hydrothermal process , 2002 .

[50]  M Newville,et al.  IFEFFIT: interactive XAFS analysis and FEFF fitting. , 2001, Journal of synchrotron radiation.

[51]  M. Hirano Hydrothermal synthesis and characterization of ZnGa2O4 spinel fine particles , 2000 .

[52]  G. Patzke,et al.  Chemical transport phenomena in the ZnO–Ga2O3 system , 1999 .

[53]  M. Yokoyama,et al.  The Effect of Li, Cu and Zn Doping on the Luminance and Conductivity of Blue ZnGa 2O 4 Phosphor , 1998 .

[54]  T. Ressler WinXAS: a program for X-ray absorption spectroscopy data analysis under MS-Windows. , 1998, Journal of synchrotron radiation.

[55]  Y. Qian,et al.  Self-Regulation Synthesis of Nanocrystalline ZnGa2O4 by Hydrothermal Reaction , 1998 .

[56]  A. Ankudinov,et al.  RELATIVISTIC CALCULATIONS OF SPIN-DEPENDENT X-RAY-ABSORPTION SPECTRA , 1997 .

[57]  J. S. D. Viñuela,et al.  Distribution of copper ions among octahedral and tetrahedral sites in CuxMg1−xAl2O4 spinels , 1987 .

[58]  J. Krebs,et al.  EPR of Fe 3+ and Mn 2+ in single-crystal ZnGa 2 O 4 spinel , 1979 .

[59]  J. Vickerman,et al.  Solid state properties of copper containing spinel solid solutions (CuxMg1–xAl2O4) , 1977 .

[60]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[61]  M. D. Wit,et al.  Electron Paramagnetic Resonance of Copper in Beryllium Oxide , 1967 .

[62]  M. Robbins,et al.  Cooperative jahn-teller distortions and site preferences in Cu2+-containing spinels , 1965 .

[63]  A. Yariv,et al.  Electronic Structure of Copper Impurities in ZnO , 1963 .