Fabrication of Photonic Band-Gap Crystals

We describe the fabrication of three-dimensional photonic crystals using a reproducible and reliable procedure consisting of electron beam lithography followed by a sequence of dry etching steps. Careful fabrication has enabled us to define photonic crystals with 280 nm holes defined with 350 nm center to center spacings in GaAsP and GaAs epilayers. We construct these photonic crystals by transferring a submicron pattern of holes from 70-nm-thick polymethylmethacrylate resist layers into 300-nm-thick silicon dioxide ion etch masks, and then anisotropically angle etching the III-V semiconductor material using this mask. Here, we show the procedure used to generate photonic crystals with up to four lattice periods depth.