Convergence of a Second-order Energy-decaying Method for the Viscous Rotating Shallow Water Equation

An implicit energy-decaying modified Crank–Nicolson time-stepping method is constructed for the viscous rotating shallow water equation on the plane. Existence, uniqueness and convergence of semidiscrete solutions are proved by using Schaefer’s fixed point theorem and H estimates of the discretized hyperbolic–parabolic system. For practical computation, the semidiscrete method is further discretized in space, resulting in a fully discrete energy-decaying finite element scheme. A fixed-point iterative method is proposed for solving the nonlinear algebraic system. The numerical results show that the proposed method requires only a few iterations to achieve the desired accuracy, with second-order convergence in time, and preserves energy decay well.

[1]  Jalil Rashidinia,et al.  Numerical solution of the nonlinear Klein-Gordon equation , 2010, J. Comput. Appl. Math..

[2]  Manuel Jesús Castro Díaz,et al.  A Fully Well-Balanced Lagrange-Projection-Type Scheme for the Shallow-Water Equations , 2018, SIAM J. Numer. Anal..

[3]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[4]  Michel C. Delfour,et al.  Finite-difference solutions of a non-linear Schrödinger equation , 1981 .

[5]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[6]  Linda Sundbye Global Existence for the Dirichlet Problem for the Viscous Shallow Water Equations , 1996 .

[7]  J. Cooper SINGULAR INTEGRALS AND DIFFERENTIABILITY PROPERTIES OF FUNCTIONS , 1973 .

[8]  Thanh Tran,et al.  A Galerkin method with spherical splines for the shallow water equations on a sphere: error analysis , 2015, Numerische Mathematik.

[9]  Galerkin finite element methods for the Shallow Water equations over variable bottom , 2019, 1901.04230.

[10]  Linda Sundbye Global Existence for the Cauchy Problem for the Viscous Shallow Water Equations , 1998 .

[11]  Y. Xing Numerical Methods for the Nonlinear Shallow Water Equations , 2017 .

[12]  El Maati Ouhabaz Gaussian estimates and holomorphy of semigroups , 1995 .

[13]  Mary F. Wheeler,et al.  Finite Element Approximations to the System of Shallow Water Equations I: Continuous-Time A Priori Error Estimates , 1998 .

[14]  Julia,et al.  Vector-valued Laplace Transforms and Cauchy Problems , 2011 .

[15]  P. G. Ciarlet,et al.  Linear and Nonlinear Functional Analysis with Applications , 2013 .

[16]  V. Dougalis,et al.  On the standard Galerkin method with explicit RK4 time stepping for the shallow water equations , 2018, IMA Journal of Numerical Analysis.

[17]  Yulong Xing,et al.  High-order well-balanced finite volume WENO schemes for shallow water equation with moving water , 2007, J. Comput. Phys..

[18]  Finite Element Approximations to the System of Shallow Water Equations, Part Ii: Discrete Time a Priori Error Estimates , 1997 .

[19]  William G. Gray,et al.  A wave equation model for finite element tidal computations , 1979 .

[20]  Yulong Xing,et al.  High order finite difference WENO schemes with the exact conservation property for the shallow water equations , 2005 .

[21]  Jean-Luc Guermond,et al.  Well-Balanced Second-Order Approximation of the Shallow Water Equation with Continuous Finite Elements , 2017, SIAM J. Numer. Anal..

[22]  Weiwei Sun,et al.  Unconditional Convergence and Optimal Error Estimates of a Galerkin-Mixed FEM for Incompressible Miscible Flow in Porous Media , 2012, SIAM J. Numer. Anal..

[23]  Weiwei Sun,et al.  A New Error Analysis of Characteristics-Mixed FEMs for Miscible Displacement in Porous Media , 2014, SIAM J. Numer. Anal..

[24]  G. Akrivis,et al.  On fully discrete Galerkin methods of second-order temporal accuracy for the nonlinear Schrödinger equation , 1991 .

[25]  Max Gunzburger,et al.  Exponential time differencing for mimetic multilayer ocean models , 2019, J. Comput. Phys..

[26]  A. Quarteroni,et al.  RECENT DEVELOPMENTS IN THE NUMERICAL SIMULATION OF SHALLOW WATER EQUATIONS II: TEMPORAL DISCRETIZATION , 1994 .

[27]  Clint Dawson,et al.  A characteristic-Galerkin approximation to a system of shallow water equations , 2000, Numerische Mathematik.

[28]  Robert L. Higdon,et al.  Numerical modelling of ocean circulation , 2006, Acta Numerica.

[29]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .