Taxonomy and pathogenesis of the Burkholderia cepacia complex

Patients with cystic fibrosis (CF) are susceptible to chronic respiratory infection with a number of bacterial pathogens. The Burkholderia cepacia complex bacteria are problematic CF pathogens because (i) they are very resistant to antibiotics, making respiratory infection difficult to treat and eradicate; (ii) infection with these bacteria is associated with high mortality in CF; (iii) they may spread from one CF patient to another, leading to considerable problems for both patients and carers; and (iv) B. cepacia complex bacteria are difficult to identify and nine new species have now been found to constitute isolates originally identified as ‘B. cepacia’ based on their phenotypic properties. Here we review the changes that have occurred in the taxonomy of the B. cepacia complex and the pathogenic factors these bacteria possess. While the taxonomy of the B.cepacia complex has advanced considerably with the development of accurate methods for their identification, the pathogenic mechanisms employed by these CF pathogens are only just beginning to be explored at the molecular level. Several virulence factors have been defined for B. cenocepacia (the dominant CF pathogen within the complex); however, knowledge of the disease mechanisms employed by other B. cepacia complex species is limited. The recent determination of the complete genome sequences for several of the B. cepacia complex species should greatly enhance our ability to study these problematic CF pathogens.

[1]  P. Corris,et al.  Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. , 2004, American journal of respiratory and critical care medicine.

[2]  S. Miller,et al.  Accuracy of four commercial systems for identification of Burkholderia cepacia and other gram-negative nonfermenting bacilli recovered from patients with cystic fibrosis , 1996, Journal of clinical microbiology.

[3]  J. Lipuma,et al.  Lack of cable pili expression by cblA-containing Burkholderia cepacia complex. , 2002, Microbiology.

[4]  C. Hart,et al.  A putative type III secretion gene cluster is widely distributed in the Burkholderia cepacia complex but absent from genomovar I. , 2001, FEMS microbiology letters.

[5]  M. Doudoroff,et al.  Taxonomy of the aerobic pseudomonads: Pseudomonas cepacia, P. marginata, P. alliicola and P. caryophylli. , 1970, Journal of general microbiology.

[6]  R. Goldstein,et al.  Cable (cbl) type II pili of cystic fibrosis-associated Burkholderia (Pseudomonas) cepacia: nucleotide sequence of the cblA major subunit pilin gene and novel morphology of the assembled appendage fibers , 1995, Journal of bacteriology.

[7]  P. de Vos,et al.  Identification and Population Structure ofBurkholderia stabilis sp. nov. (formerly Burkholderia cepacia Genomovar IV) , 2000, Journal of Clinical Microbiology.

[8]  J. Goldberg,et al.  Lipopolysaccharide of Burkholderia cepacia complex. , 2003, Journal of endotoxin research.

[9]  P. Vandamme,et al.  Evaluation of species-specific recA-based PCR tests for genomovar level identification within the Burkholderia cepacia complex. , 2002, Journal of medical microbiology.

[10]  Adam Baldwin,et al.  Burkholderia cepacia complex infection in patients with cystic fibrosis. , 2002, Journal of medical microbiology.

[11]  P. Vandamme,et al.  Burkholderia cepacia genomovar VI, a new member of the Burkholderia cepacia complex isolated from cystic fibrosis patients. , 2001, International journal of systematic and evolutionary microbiology.

[12]  J. Burns,et al.  Correlation between an In Vitro Invasion Assay and a Murine Model of Burkholderia cepacia Lung Infection , 2002, Infection and Immunity.

[13]  J. Lipuma,et al.  Disproportionate distribution of Burkholderia cepacia complex species and transmissibility markers in cystic fibrosis. , 2001, American journal of respiratory and critical care medicine.

[14]  C. Herfst,et al.  Role of Flagella in Host Cell Invasion by Burkholderia cepacia , 2002, Infection and Immunity.

[15]  E. Greenberg,et al.  Quorum Sensing in Burkholderia cepacia: Identification of the LuxRI Homologs CepRI , 1999, Journal of bacteriology.

[16]  B. Conway,et al.  Biofilm Formation and Acyl Homoserine Lactone Production in the Burkholderia cepacia Complex , 2002, Journal of bacteriology.

[17]  P. Vandamme,et al.  Influence of taxonomic status on the in vitro antimicrobial susceptibility of the Burkholderia cepacia complex. , 2002, The Journal of antimicrobial chemotherapy.

[18]  R. Stern,et al.  Person-to-person transmission of Pseudomonas cepacia between patients with cystic fibrosis , 1990, The Lancet.

[19]  M. Curtis,et al.  Identification of Pseudomonas cepacia Burkholder and Its Synonymy with Pseudomonas kingii Jonsson , 1972 .

[20]  J. Leitão,et al.  Molecular Typing and Exopolysaccharide Biosynthesis of Burkholderia cepacia Isolates from a Portuguese Cystic Fibrosis Center , 2000, Journal of Clinical Microbiology.

[21]  P. Vandamme,et al.  Occurrence of multiple genomovars of Burkholderia cepacia in cystic fibrosis patients and proposal of Burkholderia multivorans sp. nov. , 1997, International journal of systematic bacteriology.

[22]  P. Gilligan,et al.  Patterns of Epithelial Cell Invasion by Different Species of the Burkholderia cepacia Complex in Well-Differentiated Human Airway Epithelia , 2002, Infection and Immunity.

[23]  C. Corbett,et al.  An extracellular zinc metalloprotease gene of Burkholderia cepacia. , 2003, Microbiology.

[24]  T. Beveridge,et al.  Putative virulence factors are released in association with membrane vesicles from Burkholderia cepacia. , 2003, Canadian journal of microbiology.

[25]  P. Vandamme,et al.  Proposal to accommodate Burkholderia cepacia genomovar VI as Burkholderia dolosa sp. nov. , 2004, International journal of systematic and evolutionary microbiology.

[26]  D. Davidson,et al.  Differential Persistence among Genomovars of the Burkholderia cepacia Complex in a Murine Model of Pulmonary Infection , 2002, Infection and Immunity.

[27]  M. Parsek,et al.  Bacterial biofilms: an emerging link to disease pathogenesis. , 2003, Annual review of microbiology.

[28]  S. Oie,et al.  Microbial contamination of antiseptics and disinfectants. , 1996, American journal of infection control.

[29]  R. Chernish,et al.  Approach to resistant gram-negative bacterial pulmonary infections in patients with cystic fibrosis. , 2003, Current opinion in pulmonary medicine.

[30]  S. Lory,et al.  Pseudomonas aeruginosa regulates flagellin expression as part of a global response to airway fluid from cystic fibrosis patients. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[31]  P. Vandamme,et al.  Infection with Burkholderia cepacia complex genomovars in patients with cystic fibrosis: virulent transmissible strains of genomovar III can replace Burkholderia multivorans. , 2001, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[32]  D. Simpson,et al.  Identification and characterization of a novel DNA marker associated with epidemic Burkholderia cepacia strains recovered from patients with cystic fibrosis , 1997, Journal of clinical microbiology.

[33]  P. Vandamme,et al.  Updated Version of the Burkholderia cepacia Complex Experimental Strain Panel , 2003, Journal of Clinical Microbiology.

[34]  D. Speert Advances in Burkholderia cepacia complex. , 2002, Paediatric respiratory reviews.

[35]  A. Kelman,et al.  Evaluation of selective media for isolation of soft-rot bacteria from soil and plant tissue. , 1974 .

[36]  P. Vandamme,et al.  Outbreak of Subclinical Mastitis in a Flock of Dairy Sheep Associated with Burkholderia cepacia Complex Infection , 2001, Journal of Clinical Microbiology.

[37]  A. Vidaver,et al.  Bacteriocin, plasmid and pectolytic diversity in Pseudomonas cepacia of clinical and plant origin. , 1979, Journal of general microbiology.

[38]  B. Manning,et al.  Genomic complexity and plasticity of Burkholderia cepacia. , 1996, FEMS microbiology letters.

[39]  P. Williams,et al.  Controlling infection by tuning in and turning down the volume of bacterial small-talk. , 2002, The Lancet. Infectious diseases.

[40]  M. Doudoroff,et al.  Nucleic Acid Homologies in the Genus Pseudomonas , 1973 .

[41]  P. Vandamme,et al.  Burkholderia anthina sp. nov. and Burkholderia pyrrocinia, two additional Burkholderia cepacia complex bacteria, may confound results of new molecular diagnostic tools. , 2002, FEMS immunology and medical microbiology.

[42]  M. Corey,et al.  Epidemiology of Burkholderia cepacia Complex in Patients with Cystic Fibrosis, Canada , 2002, Emerging infectious diseases.

[43]  C. W. Moss,et al.  The fatty acids of Pseudomonas multivorans (Pseudomonas cepacia) and Pseudomonas kingii. , 1973, Journal of general microbiology.

[44]  Adherence and autoaggregation phenotypes of a Burkholderia cenocepacia cable pilus mutant. , 2003, FEMS microbiology letters.

[45]  S. Lewenza,et al.  Distribution of Quorum-Sensing Genes in the Burkholderia cepacia Complex , 2001, Infection and Immunity.

[46]  S. Molin,et al.  Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111 , 2002, Molecular microbiology.

[47]  Tom Coenye,et al.  Burkholderia cenocepacia sp. nov.--a new twist to an old story. , 2003, Research in microbiology.

[48]  T. Beveridge,et al.  Colonial Morphology of Burkholderia cepacia Complex Genomovar III: Implications in Exopolysaccharide Production, Pilus Expression, and Persistence in the Mouse , 2003, Infection and Immunity.

[49]  P. Sokol,et al.  The CepIR quorum-sensing system contributes to the virulence of Burkholderia cenocepacia respiratory infections. , 2003, Microbiology.

[50]  J. Leitão,et al.  Macromolecular and solution properties of Cepacian: the exopolysaccharide produced by a strain of Burkholderia cepacia isolated from a cystic fibrosis patient. , 2003, Carbohydrate research.

[51]  J. Goldberg,et al.  Review: Lipopolysaccharide of Burkholderia cepacia complex , 2003 .

[52]  J. Parke,et al.  Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. , 2001, Annual review of phytopathology.

[53]  M. Corey,et al.  Pseudomonas cepacia infection in cystic fibrosis: an emerging problem. , 1984, The Journal of pediatrics.

[54]  E. Mahenthiralingam,et al.  Nonmotility and phagocytic resistance of Pseudomonas aeruginosa isolates from chronically colonized patients with cystic fibrosis , 1994, Infection and immunity.

[55]  M. Valvano,et al.  Intracellular survival of Burkholderia cepacia complex isolates in the presence of macrophage cell activation. , 1999, Microbiology.

[56]  P. Vandamme,et al.  DNA-Based Diagnostic Approaches for Identification of Burkholderia cepacia Complex, Burkholderia vietnamiensis, Burkholderia multivorans,Burkholderia stabilis, and Burkholderia cepacia Genomovars I and III , 2000, Journal of Clinical Microbiology.

[57]  Tom Coenye,et al.  Diversity and significance of Burkholderia species occupying diverse ecological niches. , 2003, Environmental microbiology.

[58]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.

[59]  W. H. Burkholder Sour skin, a bacterial rot. , 1950 .

[60]  P. Hoffman,et al.  Home-use nebulizers: a potential primary source of Burkholderia cepacia and other colistin-resistant, gram-negative bacteria in patients with cystic fibrosis , 1996, Journal of clinical microbiology.

[61]  P. Vandamme,et al.  Characterization of Unusual Bacteria Isolated from Respiratory Secretions of Cystic Fibrosis Patients and Description of Inquilinus limosus gen. nov., sp. nov , 2002, Journal of Clinical Microbiology.

[62]  P. Vandamme,et al.  Burkholderia ambifaria sp. nov., a novel member of the Burkholderia cepacia complex including biocontrol and cystic fibrosis-related isolates. , 2001, International journal of systematic and evolutionary microbiology.

[63]  Tom Coenye,et al.  Taxonomy and Identification of the Burkholderia cepacia Complex , 2001, Journal of Clinical Microbiology.

[64]  Takayuki Ezaki,et al.  Proposal of Burkholderia gen. nov. and Transfer of Seven Species of the Genus Pseudomonas Homology Group II to the New Genus, with the Type Species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. , 1992, Microbiology and immunology.

[65]  J. Govan,et al.  Multi-resistance isolates possessing characteristics of both Burkholderia (Pseudomonas) cepacia and Burkholderia gladioli from patients with cystic fibrosis. , 1994, The Journal of antimicrobial chemotherapy.

[66]  R. Rosselló-Móra,et al.  Taxonomic Note: A Pragmatic Approach to the Nomenclature of Phenotypically Similar Genomic Groups , 1995 .

[67]  P. Vandamme,et al.  Diagnostically and Experimentally Useful Panel of Strains from the Burkholderia cepacia Complex , 2000, Journal of Clinical Microbiology.

[68]  P. Vandamme,et al.  Burkholderia cepacia Complex Bacteria from Clinical and Environmental Sources in Italy: Genomovar Status and Distribution of Traits Related to Virulence and Transmissibility , 2002, Journal of Clinical Microbiology.

[69]  M. Dodd,et al.  Evidence for transmission of Pseudomonas cepacia by social contact in cystic fibrosis , 1993, The Lancet.

[70]  L. Eberl,et al.  Killing of Caenorhabditis elegans by Burkholderia cepacia is controlled by the cep quorum‐sensing system , 2003, Cellular microbiology.

[71]  V. Jonsson Proposal of a new species Pseudomonas kingii1 , 1970 .

[72]  Adam Baldwin,et al.  The Burkholderia cepacia Epidemic Strain Marker Is Part of a Novel Genomic Island Encoding Both Virulence and Metabolism-Associated Genes in Burkholderia cenocepacia , 2004, Infection and Immunity.

[73]  J. Burns,et al.  Salicylate induces an antibiotic efflux pump in Burkholderia cepacia complex genomovar III (B. cenocepacia). , 2004, The Journal of clinical investigation.

[74]  V. Deretic,et al.  Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. , 1996, Microbiological reviews.