Collapse and rebound of a laser-induced cavitation bubble

A strong laser pulse that is focused into a liquid produces a vapor cavity, which first expands and then collapses with subsequent rebounds. In this paper a mathematical model of the spherically symmetric motion of a laser-induced bubble is proposed. It describes gas and liquid dynamics including compressibility, heat, and mass transfer effects and nonequilibrium processes of evaporation and condensation on the bubble wall. It accounts also for the occurrence of supercritical conditions at collapse. Numerical investigations of the collapse and first rebound have been carried out for different bubble sizes. The results show a fairly good agreement with experimental measurements of the bubble radius evolution and the intensity of the outgoing shock wave emitted at collapse. Calculations with a small amount of noncondensable gas inside the bubble show its strong influence on the dynamics.

[1]  John R. Blake,et al.  Cavitation Bubbles Near Boundaries , 1987 .

[2]  Mark Harrison An Experimental Study of Single Bubble Cavitation Noise , 1952 .

[3]  Teruaki Akamatsu,et al.  Effects of the non-equilibrium condensation of vapour on the pressure wave produced by the collapse of a bubble in a liquid , 1980, Journal of Fluid Mechanics.

[4]  R. Mesler,et al.  A Photographic Study of the Dynamics and Damage Capabilities of Bubbles Collapsing Near Solid Boundaries , 1965 .

[5]  Robert I. Nigmatulin,et al.  Heat exchange between a gas bubble and a liquid , 1974 .

[6]  C. Ohl,et al.  Luminescence from Spherically and Aspherically Collapsing Laser Induced Bubbles , 1998 .

[7]  L. Rayleigh VIII. On the pressure developed in a liquid during the collapse of a spherical cavity , 1917 .

[8]  A. N. Kraiko,et al.  Numerical solution of multidimensional problems of gas dynamics , 1976 .

[9]  Andrea Prosperetti,et al.  Bubble dynamics: Some things we did not know 10 years ago , 1994 .

[10]  Andrew J. Szeri,et al.  Sonoluminescence and diffusive transport , 1996 .

[11]  J. Warner,et al.  A Determination of the Condensation Coefficient of Water from the Growth Rate of Small Cloud Droplets , 1974 .

[12]  David A. Young,et al.  Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence , 1994 .

[13]  Lawrence A. Crum,et al.  Sonoluminescence and bubble dynamics for a single, stable, cavitation bubble , 1992 .

[14]  M. Kornfeld,et al.  On the Destructive Action of Cavitation , 1944 .

[15]  J. W. Kirsch,et al.  Analytical Equation of State for Water Compressed to 300 Kbar , 1971 .

[16]  Werner Lauterborn,et al.  Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary , 1989, Journal of Fluid Mechanics.

[17]  E. Hairer,et al.  Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems , 2010 .

[18]  Donald E. Hagen,et al.  Condensation Coefficient Measurement for Water in the UMR Cloud Simulation Chamber , 1989 .

[19]  A. Wilhelm,et al.  Modelling of free radicals production in a collapsing gas-vapour bubble. , 1997, Ultrasonics sonochemistry.

[20]  Olgert Lindau,et al.  Bubble dynamics, shock waves and sonoluminescence , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[21]  Farrington Daniels,et al.  Physical Chemistry, 2nd Ed. , 1961 .

[22]  Kwak,et al.  Hydrodynamic Solutions for a Sonoluminescing Gas Bubble. , 1996, Physical review letters.

[23]  W. Lauterborn,et al.  Cavitation erosion by single laser-produced bubbles , 1998, Journal of Fluid Mechanics.

[24]  A. T. Ellis,et al.  On the Mechanism of Cavitation Damage by Nonhemispherical Cavities Collapsing in Contact With a Solid Boundary , 1961 .

[25]  A. Shima,et al.  Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse , 1986, Journal of Fluid Mechanics.

[26]  Linda K. Weavers,et al.  CHEMICAL BUBBLE DYNAMICS AND QUANTITATIVE SONOCHEMISTRY , 1998 .

[27]  D. Lohse,et al.  Sonoluminescence light emission , 1999 .

[28]  Max Born,et al.  Zur Gittertheorie der Ionenkristalle , 1932 .

[29]  A. Szeri,et al.  Water vapour, sonoluminescence and sonochemistry , 2000, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[30]  J. Blake,et al.  Transient cavities near boundaries. Part 1. Rigid boundary , 1986, Journal of Fluid Mechanics.

[31]  Robert I. Nigmatulin,et al.  Dynamics of multiphase media , 1991 .

[32]  R. Schrage A theoretical study of interphase mass transfer , 1953 .

[33]  O. Baghdassarian,et al.  LUMINESCENCE CHARACTERISTICS OF LASER-INDUCED BUBBLES IN WATER , 1999 .

[34]  David A. Young,et al.  Hydrodynamic simulations of bubble collapse and picosecond sonoluminescence , 1994 .

[35]  Kondic,et al.  Theoretical studies of sonoluminescence radiation: Radiative transfer and parametric dependence. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[36]  K. Yasui ALTERNATIVE MODEL OF SINGLE-BUBBLE SONOLUMINESCENCE , 1997 .

[37]  J. Staudenraus,et al.  Fibre-optic probe hydrophone for ultrasonic and shock-wave measurements in water , 1993 .

[38]  N. H. Thomas,et al.  Bubble Dynamics and Interface Phenomena , 1994 .

[39]  Wu,et al.  Shock-wave propagation in a sonoluminescing gas bubble. , 1993, Physical review letters.

[40]  Andrea Prosperetti,et al.  Nonlinear bubble dynamics , 1988 .

[41]  J. Field,et al.  A high‐speed photographic study of cavitation damage , 1995 .

[42]  Andrea Prosperetti,et al.  Bubble dynamics in a compressible liquid. Part 1. First-order theory , 1986, Journal of Fluid Mechanics.

[43]  Seth Putterman,et al.  Defining the unknowns of sonoluminescence , 1997 .

[44]  W. Lauterborn,et al.  Experimental investigations of cavitation-bubble collapse in the neighbourhood of a solid boundary , 1975, Journal of Fluid Mechanics.

[45]  Richard T. Lahey,et al.  On the forced oscillations of a small gas bubble in a spherical liquid-filled flask , 2000, Journal of Fluid Mechanics.

[46]  G. Mie Zur kinetischen Theorie der einatomigen Körper , 1903 .

[47]  Shaw,et al.  The interaction of a laser-generated cavity with a solid boundary , 2000, The Journal of the Acoustical Society of America.

[48]  E. Grüneisen Zusammenhang zwischen Kompressibilität, thermischer Ausdehnung, Atomvolumen und Atomwärme der Metalle , 1908 .

[49]  K. Yasui Effects of thermal conduction on bubble dynamics near the sonoluminescence threshold , 1995 .

[50]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[51]  A. Szeri,et al.  Shock formation within sonoluminescence bubbles , 1997 .