Single-cell ATAC sequencing analysis: From data preprocessing to hypothesis generation

Graphical abstract

[1]  C. Glass,et al.  Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. , 2010, Molecular cell.

[2]  Cole Trapnell,et al.  The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells , 2014, Nature Biotechnology.

[3]  Stephen C. J. Parker,et al.  Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures , 2019, bioRxiv.

[4]  Tao Jiang,et al.  SCALE method for single-cell ATAC-seq analysis via latent feature extraction , 2019, Nature Communications.

[5]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[6]  Yunming Ye,et al.  Deconvolution of single-cell multi-omics layers reveals regulatory heterogeneity , 2018, Nature Communications.

[7]  B. Dickson,et al.  Genome-scale functional characterization of Drosophila developmental enhancers in vivo , 2014, Nature.

[8]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[9]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[10]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[11]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.

[12]  Yong Wang,et al.  Integrative analysis of single-cell genomics data by coupled nonnegative matrix factorizations , 2018, Proceedings of the National Academy of Sciences.

[13]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[14]  S. Aerts,et al.  Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics , 2020, Molecular systems biology.

[15]  Trygve E Bakken,et al.  Epigenetic landscape and AAV targeting of human neocortical cell classes , 2019 .

[16]  Howard Y. Chang,et al.  Transcript-indexed ATAC-seq for precision immune profiling , 2018, Nature Medicine.

[17]  Stefan Schoenfelder,et al.  Long-range enhancer–promoter contacts in gene expression control , 2019, Nature Reviews Genetics.

[18]  Ji Zhang,et al.  GREGOR: evaluating global enrichment of trait-associated variants in epigenomic features using a systematic, data-driven approach , 2015, Bioinform..

[19]  Qin Zhu,et al.  Developmental trajectory of pre-hematopoietic stem cell formation from endothelium , 2019 .

[20]  Garreck H. Lenz,et al.  Prospective, brain-wide labeling of neuronal subclasses with enhancer-driven AAVs , 2019, bioRxiv.

[21]  K. Mohlke,et al.  Allele-Specific Transcriptional Activity at Type 2 Diabetes–Associated Single Nucleotide Polymorphisms in Regions of Pancreatic Islet Open Chromatin at the JAZF1 Locus , 2013, Diabetes.

[22]  M Dugas,et al.  Benchmarking atlas-level data integration in single-cell genomics , 2020, Nature Methods.

[23]  Katherine S. Pollard,et al.  Semi-supervised identification of cell populations in single-cell ATAC-seq , 2019, bioRxiv.

[24]  Lai Guan Ng,et al.  Dimensionality reduction for visualizing single-cell data using UMAP , 2018, Nature Biotechnology.

[25]  Martin J. Aryee,et al.  Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility , 2019, Nature Biotechnology.

[26]  J. Lee,et al.  Single-cell RNA sequencing technologies and bioinformatics pipelines , 2018, Experimental & Molecular Medicine.

[27]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[28]  S. Teichmann,et al.  Single cell RNA-seq and ATAC-seq analysis of cardiac progenitor cell transition states and lineage settlement , 2018, Nature Communications.

[29]  Hiroyuki Ogata,et al.  KEGG: Kyoto Encyclopedia of Genes and Genomes , 1999, Nucleic Acids Res..

[30]  Steven M. Gallo,et al.  REDfly: the transcriptional regulatory element database for Drosophila , 2018, Nucleic Acids Res..

[31]  B. Ren,et al.  Fast and Accurate Clustering of Single Cell Epigenomes Reveals Cis-Regulatory Elements in Rare Cell Types , 2019 .

[32]  Tom H. Pringle,et al.  The human genome browser at UCSC. , 2002, Genome research.

[33]  Guangchuang Yu,et al.  clusterProfiler: an R package for comparing biological themes among gene clusters. , 2012, Omics : a journal of integrative biology.

[34]  Martin J. Aryee,et al.  Interrogation of human hematopoiesis at single-cell and single-variant resolution , 2018, Nature Genetics.

[35]  Li Wang,et al.  Dimensionality Reduction Via Graph Structure Learning , 2015, KDD.

[36]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[37]  Casey A. Thornton,et al.  Improved single-cell ATAC-seq reveals chromatin dynamics of in vitro corticogenesis , 2019, bioRxiv.

[38]  Evan Z. Macosko,et al.  Highly Parallel Genome-wide Expression Profiling of Individual Cells Using Nanoliter Droplets , 2015, Cell.

[39]  John D. Storey,et al.  Statistical significance of variables driving systematic variation in high-dimensional data , 2013, Bioinform..

[40]  Yang I Li,et al.  An Expanded View of Complex Traits: From Polygenic to Omnigenic , 2017, Cell.

[41]  Cory Y. McLean,et al.  GREAT improves functional interpretation of cis-regulatory regions , 2010, Nature Biotechnology.

[42]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[43]  Kun Zhang,et al.  High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell , 2019, Nature Biotechnology.

[44]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[45]  Zhicheng Ji,et al.  Single-cell regulome data analysis by SCRAT , 2017, Bioinform..

[46]  Aviv Regev,et al.  BROCKMAN: deciphering variance in epigenomic regulators by k-mer factorization , 2018, BMC Bioinformatics.

[47]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[48]  Stein Aerts,et al.  cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data , 2019, Nature Methods.

[49]  Andrew C. Adey,et al.  Joint profiling of chromatin accessibility and gene expression in thousands of single cells , 2018, Science.

[50]  Howard Y. Chang,et al.  Joint single-cell DNA accessibility and protein epitope profiling reveals environmental regulation of epigenomic heterogeneity , 2018, Nature Communications.

[51]  Miguel Reyes,et al.  Simultaneous Profiling of Gene Expression and Chromatin Accessibility in Single Cells , 2019, Advanced biosystems.

[52]  Pawel F. Przytycki,et al.  Single cell epigenomic atlas of the developing human brain and organoids , 2019, bioRxiv.

[53]  Howard Y. Chang,et al.  Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia , 2019, Nature Biotechnology.

[54]  Fabian J Theis,et al.  Current best practices in single‐cell RNA‐seq analysis: a tutorial , 2019, Molecular systems biology.

[55]  Inna Dubchak,et al.  VISTA Enhancer Browser—a database of tissue-specific human enhancers , 2006, Nucleic Acids Res..

[56]  David J. Arenillas,et al.  JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles , 2015, Nucleic Acids Res..

[57]  Alicia N. Schep,et al.  Unsupervised clustering and epigenetic classification of single cells , 2017, Nature Communications.

[58]  C. Glass,et al.  The selection and function of cell type-specific enhancers , 2015, Nature Reviews Molecular Cell Biology.

[59]  Yuchao Jiang,et al.  Destin: toolkit for single-cell analysis of chromatin accessibility , 2018, bioRxiv.

[60]  Florian Hahne,et al.  Visualizing Genomic Data Using Gviz and Bioconductor , 2016, Statistical Genomics.

[61]  Miguel A. Andrade-Navarro,et al.  Assessment of computational methods for the analysis of single-cell ATAC-seq data , 2019, Genome Biology.

[62]  Howard Y. Chang,et al.  Massively parallel single-cell chromatin landscapes of human immune cell development and intratumoral T cell exhaustion , 2019, bioRxiv.

[63]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[64]  Andrew C. Adey,et al.  The accessible chromatin landscape of the murine hippocampus at single-cell resolution , 2019, Genome research.

[65]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[66]  Fabian J. Theis,et al.  EpiScanpy: integrated single-cell epigenomic analysis , 2019, bioRxiv.

[67]  Ansuman T. Satpathy,et al.  Coupled Single-Cell CRISPR Screening and Epigenomic Profiling Reveals Causal Gene Regulatory Networks , 2018, Cell.

[68]  William Stafford Noble,et al.  Jointly Embedding Multiple Single-Cell Omics Measurements , 2019, bioRxiv.

[69]  Wenbao Yu,et al.  scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data , 2019, Genome Biology.

[70]  J. Collins,et al.  Parallel bimodal single-cell sequencing of transcriptome and chromatin accessibility , 2019, bioRxiv.

[71]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[72]  Hannah A. Pliner,et al.  The cis-regulatory dynamics of embryonic development at single cell resolution , 2017, Nature.

[73]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer , 2011, Nature Biotechnology.

[74]  Chengchen Zhao,et al.  Dr.seq2: A quality control and analysis pipeline for parallel single cell transcriptome and epigenome data , 2017, bioRxiv.

[75]  S. Aerts,et al.  Identification of genomic enhancers through spatial integration of single‐cell transcriptomics and epigenomics , 2019, bioRxiv.

[76]  Marcel J. T. Reinders,et al.  A comparison of automatic cell identification methods for single-cell RNA sequencing data , 2019, Genome Biology.

[77]  S. Batzoglou,et al.  Genome-Wide Analysis of Transcription Factor Binding Sites Based on ChIP-Seq Data , 2008, Nature Methods.

[78]  Nathan C. Sheffield,et al.  Predicting cell-type–specific gene expression from regions of open chromatin , 2012, Genome research.

[79]  Howard Y. Chang,et al.  Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position , 2013, Nature Methods.

[80]  Kate B. Cook,et al.  Determination and Inference of Eukaryotic Transcription Factor Sequence Specificity , 2014, Cell.

[81]  Ricardo J. Miragaia,et al.  A rapid and robust method for single cell chromatin accessibility profiling , 2018, Nature Communications.

[82]  William S. DeWitt,et al.  A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility , 2018, Cell.

[83]  D. Dickel,et al.  Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.

[84]  Michael I. Jordan,et al.  Deep Generative Modeling for Single-cell Transcriptomics , 2018, Nature Methods.

[85]  Roman Spektor,et al.  Single cell ATAC-seq identifies broad changes in neuronal abundance and chromatin accessibility in Down Syndrome , 2019, bioRxiv.

[86]  Howard Y. Chang,et al.  Single-cell epigenomic identification of inherited risk loci in Alzheimer’s and Parkinson’s disease , 2020, bioRxiv.

[87]  Philipp Berens,et al.  The art of using t-SNE for single-cell transcriptomics , 2018, Nature Communications.

[88]  Stephen C. J. Parker,et al.  Stretch-Enhancers Delineate Disease-Associated Regulatory Nodes in T Cells , 2014, Nature.

[89]  S. Pääbo,et al.  Single-cell genomic atlas of great ape cerebral organoids uncovers human-specific features of brain development , 2019, bioRxiv.

[90]  Michael A. Dyer,et al.  Nucleome Dynamics during Retinal Development , 2019, Neuron.

[91]  Stephen C. J. Parker,et al.  Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures , 2019, Molecular metabolism.

[92]  Qin Zhu,et al.  Developmental trajectory of pre-hematopoietic stem cell formation from endothelium. , 2020, Blood.

[93]  Shuigeng Zhou,et al.  Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM , 2019, Nature Communications.

[94]  L. Groop Open chromatin and diabetes risk , 2010, Nature Genetics.

[95]  Cole Trapnell,et al.  Supervised classification enables rapid annotation of cell atlases , 2019, Nature Methods.

[96]  Sandy L. Klemm,et al.  High-throughput chromatin accessibility profiling at single-cell resolution , 2018, Nature Communications.

[97]  Yong Wang,et al.  DC3 is a method for deconvolution and coupled clustering from bulk and single-cell genomics data , 2019, Nature Communications.

[98]  Fan Zhang,et al.  Fast, sensitive, and accurate integration of single cell data with Harmony , 2018, bioRxiv.

[99]  Kok Siong Ang,et al.  A benchmark of batch-effect correction methods for single-cell RNA sequencing data , 2020, Genome Biology.

[100]  William Stafford Noble,et al.  FIMO: scanning for occurrences of a given motif , 2011, Bioinform..

[101]  Howard Y. Chang,et al.  ArchR: An integrative and scalable software package for single-cell chromatin accessibility analysis , 2020, bioRxiv.

[102]  Carsten Kuenne,et al.  UROPA: a tool for Universal RObust Peak Annotation , 2017, Scientific Reports.

[103]  G. Wahl,et al.  Single-Cell Chromatin Analysis of Mammary Gland Development Reveals Cell-State Transcriptional Regulators and Lineage Relationships , 2019, Cell reports.