A review of techniques for treating missing data in OM survey research

Abstract The treatment of missing data has been overlooked by the OM literature, while other fields such as marketing, organizational behavior, economics, statistics and psychometrics have paid more attention to the issue. A review of 103 survey-based articles published in the Journal of Operations Management between 1993 and 2001 shows that listwise deletion, which is often the least accurate technique of dealing with missing data, is heavily utilized by OM researchers. The paper also discusses the research implications of missing data, types of missing data and concludes with recommendations on which techniques should be used under different circumstances in order to improve the treatment of missing data in OM survey research.

[1]  P. Roth,et al.  Missing Data in Multiple Item Scales: A Monte Carlo Analysis of Missing Data Techniques , 1999 .

[2]  Paul E. Green,et al.  AN ALTERNATING LEAST‐SQUARES PROCEDURE FOR ESTIMATING MISSING PREFERENCE DATA IN PRODUCT‐CONCEPT TESTING* , 1986 .

[3]  Allan Donner,et al.  Missing value problems in multiple linear regression with two independent variables , 1982 .

[4]  J. Frane Some simple procedures for handling missing data in multivariate analysis , 1976 .

[5]  Paul A. Ruud,et al.  Extensions of estimation methods using the EM algorithm , 1991 .

[6]  Jae-On Kim,et al.  The Treatment of Missing Data in Multivariate Analysis , 1977 .

[7]  Magne Aldrin,et al.  Forecasting non‐seasonal time series with missing observations , 1989 .

[8]  Ingram Olkin,et al.  Incomplete data in sample surveys , 1985 .

[9]  Jonathon N. Cummings,et al.  Multiple Imputation for Missing Data: Making the most of What you Know , 2003 .

[10]  Daniel A. Newman Longitudinal Modeling with Randomly and Systematically Missing Data: A Simulation of Ad Hoc, Maximum Likelihood, and Multiple Imputation Techniques , 2003 .

[11]  P. Kent,et al.  Statistical package for the social sciences (second edition), N. H. Nie, C. H. Hull, J. G. Jenkins, K. Steinbrenner and D. H. Bent, McGraw-Hill, New York, 1975. No. of pages: 675. price: £5.90 , 1977 .

[12]  Second Edition,et al.  Statistical Package for the Social Sciences , 1970 .

[13]  Kenneth K. Boyer,et al.  Print versus electronic surveys: A comparison of two data collection methodologies , 2002 .

[14]  M. Raymond Missing Data in Evaluation Research , 1986 .

[15]  M. Frohlich Techniques for improving response rates in OM survey research , 2002 .

[16]  Q. Raaijmakers,et al.  Effectiveness of Different Missing Data Treatments in Surveys with Likert-Type Data: Introducing the Relative Mean Substitution Approach , 1999 .

[17]  M Van Guilder,et al.  Estimation of parameters and missing values under a regression model with non-normally distributed and non-randomly incomplete data. , 1989, Statistics in medicine.

[18]  Constance V. Hines,et al.  Nonrandomly Missing Data in Multiple Regression: An Empirical Comparison of Common Missing-Data Treatments , 1991 .

[19]  P. Roth MISSING DATA: A CONCEPTUAL REVIEW FOR APPLIED PSYCHOLOGISTS , 1994 .

[20]  Barbara B. Flynn,et al.  Empirical research methods in operations management , 1990 .

[21]  I G Sande,et al.  Missing-Data Adjustments in Large Surveys: Comment , 1988 .

[22]  Mark R. Raymond,et al.  A Comparison of Methods for Treating Incomplete Data in Selection Research , 1987 .

[23]  Olive Jean Dunn,et al.  Alternative Approaches to Missing Values in Discriminant Analysis , 1976 .

[24]  Stephen A. Stumpf A Note on Handling Missing Data , 1978 .

[25]  Richard Staelin,et al.  A proposal for handling missing data , 1975 .

[26]  D. Rubin,et al.  Statistical Analysis with Missing Data , 1988 .

[27]  Rex B. Kline,et al.  Principles and Practice of Structural Equation Modeling , 1998 .

[28]  R. Downey,et al.  Missing data in Likert ratings: A comparison of replacement methods. , 1998, The Journal of general psychology.

[29]  R. Klassen,et al.  Experimental comparison of Web, electronic and mail survey technologies in operations management , 2001 .

[30]  N M Laird,et al.  Missing data in longitudinal studies. , 1988, Statistics in medicine.

[31]  Michel Wedel,et al.  Factor Analysis and Missing Data , 2000 .

[32]  R. Little Missing-Data Adjustments in Large Surveys , 1988 .

[33]  J R Landis,et al.  Strategies for the Analysis of Imputed Data From a Sample Survey: The National Medical Care Utilization and Expenditure Survey , 1987, Medical care.

[34]  Jacob Cohen,et al.  Applied multiple regression/correlation analysis for the behavioral sciences , 1979 .

[35]  Sik-Yum Lee,et al.  Analysis of multivariate polychoric correlation models with incomplete data , 1990 .

[36]  Ingram Olkin,et al.  Incomplete data in sample surveys. Vol. 2: theory and bibliographies , 1983 .

[37]  S Koslowsky The case of the missing data , 2002 .

[38]  C. Brown,et al.  Asymptotic comparison of missing data procedures for estimating factor loadings , 1983 .

[39]  Todd R. Stinebrickner Estimation of a Duration Model in the Presence of Missing Data , 1999, Review of Economics and Statistics.

[40]  Rohit Verma,et al.  Statistical power in operations management research , 1995 .

[41]  J. Graham,et al.  Evaluating interventions with differential attrition: the importance of nonresponse mechanisms and use of follow-up data. , 1993, The Journal of applied psychology.

[42]  O. J. Dunn,et al.  The Treatment of Missing Values in Discriminant Analysis—I. The Sampling Experiment , 1972 .

[43]  Naresh K. Malhotra,et al.  Analyzing Marketing Research Data with Incomplete Information on the Dependent Variable , 1987 .