The Bayes Tree: Enabling Incremental Reordering and Fluid Relinearization for Online Mapping

Abstract : In this paper we present a novel data structure, the Bayes tree, which exploits the connections between graphical model inference and sparse linear algebra. The proposed data structure provides a new perspective on an entire class of simultaneous localization and mapping (SLAM) algorithms. Similar to a junction tree, a Bayes tree encodes a factored probability density, but unlike the junction tree it is directed and maps more naturally to the square root information matrix of the SLAM problem. This makes it eminently suited to encode the sparse nature of the problem, especially in a smoothing and mapping (SAM) context. The inherent sparsity of SAM has already been exploited in the literature to produce efficient solutions in both batch and online mapping. The graphical model perspective allows us to develop a novel incremental algorithm that seamlessly incorporates reordering and relinearization. This obviates the need for expensive periodic batch operations from previous approaches, which negatively affect the performance and detract from the intended online nature of the algorithm. The new method is evaluated using simulated and real-world datasets in both landmark and pose SLAM settings.

[1]  Frank Dellaert,et al.  A Multifrontal QR Factorization Approach to Distributed Inference Applied to Multirobot Localization and Mapping , 2005, AAAI.

[2]  Udo Frese,et al.  Treemap: An O(log n) algorithm for indoor simultaneous localization and mapping , 2006, Auton. Robots.

[3]  Edwin Olson,et al.  Fast iterative alignment of pose graphs with poor initial estimates , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[4]  Frank Dellaert,et al.  iSAM: Incremental Smoothing and Mapping , 2008, IEEE Transactions on Robotics.

[5]  Frank Dellaert,et al.  iSAM: Fast Incremental Smoothing and Mapping with Efficient Data Association , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[6]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[7]  Frank Dellaert,et al.  Covariance recovery from a square root information matrix for data association , 2009, Robotics Auton. Syst..

[8]  W. E. Gentleman Least Squares Computations by Givens Transformations Without Square Roots , 1973 .

[9]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[10]  Tom Duckett,et al.  A multilevel relaxation algorithm for simultaneous localization and mapping , 2005, IEEE Transactions on Robotics.

[11]  David J. Spiegelhalter,et al.  Probabilistic Networks and Expert Systems , 1999, Information Science and Statistics.

[12]  Frank Dellaert,et al.  Square Root SAM: Simultaneous Localization and Mapping via Square Root Information Smoothing , 2006, Int. J. Robotics Res..

[13]  Hugh F. Durrant-Whyte,et al.  Simultaneous Localization and Mapping with Sparse Extended Information Filters , 2004, Int. J. Robotics Res..

[14]  Henrik I. Christensen,et al.  Graphical SLAM - a self-correcting map , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[15]  Peter C. Cheeseman,et al.  Estimating uncertain spatial relationships in robotics , 1986, Proceedings. 1987 IEEE International Conference on Robotics and Automation.

[16]  J. M. M. Montiel,et al.  The SPmap: a probabilistic framework for simultaneous localization and map building , 1999, IEEE Trans. Robotics Autom..

[17]  Peter Cheeseman,et al.  A stochastic map for uncertain spatial relationships , 1988 .

[18]  Sebastian Thrun,et al.  Probabilistic robotics , 2002, CACM.

[19]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems - networks of plausible inference , 1991, Morgan Kaufmann series in representation and reasoning.

[20]  Rodney A. Brooks,et al.  Visual map making for a mobile robot , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[21]  Jeffrey K. Uhlmann,et al.  A counter example to the theory of simultaneous localization and map building , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[22]  F. Dellaert,et al.  Exploiting Locality by Nested Dissection For Square Root Smoothing and Mapping , 2005 .

[23]  Lina María Paz,et al.  Large-Scale 6-DOF SLAM With Stereo-in-Hand , 2008, IEEE Transactions on Robotics.

[24]  Henrik I. Christensen,et al.  Graphical SLAM using vision and the measurement subspace , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[25]  Eduardo Mario Nebot,et al.  Optimization of the simultaneous localization and map-building algorithm for real-time implementation , 2001, IEEE Trans. Robotics Autom..

[26]  P. Heggernes,et al.  Finding Good Column Orderings for Sparse QR Factorization , 1996 .

[27]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[28]  Frank Dellaert,et al.  Incremental smoothing and mapping , 2008 .

[29]  John J. Leonard,et al.  Robust Mapping and Localization in Indoor Environments Using Sonar Data , 2002, Int. J. Robotics Res..

[30]  Hugh F. Durrant-Whyte,et al.  A solution to the simultaneous localization and map building (SLAM) problem , 2001, IEEE Trans. Robotics Autom..

[31]  Michael Bosse,et al.  An Atlas framework for scalable mapping , 2003, 2003 IEEE International Conference on Robotics and Automation (Cat. No.03CH37422).

[32]  Gene H. Golub,et al.  Methods for modifying matrix factorizations , 1972, Milestones in Matrix Computation.

[33]  Alex Pothen,et al.  Distributed Multifrontal Factorization Using Clique Trees , 1991, SIAM Conference on Parallel Processing for Scientific Computing.

[34]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[35]  Frank Dellaert,et al.  MCMC Data Association and Sparse Factorization Updating for Real Time Multitarget Tracking with Merged and Multiple Measurements , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[36]  Timothy A. Davis,et al.  A column approximate minimum degree ordering algorithm , 2000, TOMS.

[37]  Mark A. Paskin,et al.  Thin Junction Tree Filters for Simultaneous Localization and Mapping , 2002, IJCAI.

[38]  Fuyun Ling Givens rotation based least squares lattice and related algorithms , 1991, IEEE Trans. Signal Process..

[39]  Frank Dellaert,et al.  Square Root SAM , 2005, Robotics: Science and Systems.

[40]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.