A Positive Asymptotic-Preserving Scheme for Linear Kinetic Transport Equations

We present a positive and asymptotic preserving numerical scheme for solving linear kinetic, transport equations that relax to a diffusive equation in the limit of infinite scattering. The proposed scheme is developed using a standard spectral angular discretization and a classical micro-macro decomposition. The three main ingredients are a semi-implicit temporal discretization, a dedicated finite difference spatial discretization, and realizability limiters in the angular discretization. Under mild assumptions on the initial condition and time step, the scheme becomes a consistent numerical discretization for the limiting diffusion equation when the scattering cross-section tends to infinity. The scheme also preserves positivity of the particle concentration on the space-time mesh and therefore fixes a common defect of spectral angular discretizations. The scheme is tested on the well-known line source benchmark problem with the usual uniform material medium as well as a medium composed from different materials that are arranged in a checkerboard pattern. We also report the observed order of space-time accuracy of the proposed scheme.

[1]  Ryan G. McClarren,et al.  Robust and accurate filtered spherical harmonics expansions for radiative transfer , 2010, J. Comput. Phys..

[2]  Carlo Cercignani The Boltzmann Equation , 1988 .

[3]  Tao Xiong,et al.  High order asymptotic preserving DG-IMEX schemes for discrete-velocity kinetic equations in a diffusive scaling , 2013, J. Comput. Phys..

[4]  André L. Tits,et al.  A constraint-reduced MPC algorithm for convex quadratic programming, with a modified active set identification scheme , 2018, Computational Optimization and Applications.

[5]  Cory D. Hauck,et al.  High-Order Entropy-Based Closures for Linear Transport in Slab Geometry II: A Computational Study of the Optimization Problem , 2012, SIAM J. Sci. Comput..

[6]  Xiangxiong Zhang,et al.  On maximum-principle-satisfying high order schemes for scalar conservation laws , 2010, J. Comput. Phys..

[7]  Warren F. Miller An analysis of the finite differenced, even-parity, discrete ordinates equations in slab geometry , 1991 .

[8]  Tai-Ping Liu,et al.  Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles , 2004 .

[9]  R. Hazeltine,et al.  The Framework Of Plasma Physics , 1998 .

[10]  Shi Jin,et al.  Efficient Asymptotic-Preserving (AP) Schemes For Some Multiscale Kinetic Equations , 1999, SIAM J. Sci. Comput..

[11]  B. Guo,et al.  Spectral Methods and Their Applications , 1998 .

[12]  Kun Xu,et al.  A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations , 2011, J. Comput. Phys..

[13]  Laurent Gosse,et al.  An asymptotic-preserving well-balanced scheme for the hyperbolic heat equations , 2002 .

[14]  Luc Mieussens,et al.  On the asymptotic preserving property of the unified gas kinetic scheme for the diffusion limit of linear kinetic models , 2013, J. Comput. Phys..

[15]  Prateek Sharma,et al.  Preserving monotonicity in anisotropic diffusion , 2007, J. Comput. Phys..

[16]  Shi Jin ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW , 2010 .

[17]  G. Habetler,et al.  Uniform asymptotic expansions in transport theory with small mean free paths, and the diffusion approximation , 1975 .

[18]  Thomas A. Brunner,et al.  Forms of Approximate Radiation Transport , 2002 .

[19]  Cory D. Hauck,et al.  A Comparison of Moment Closures for Linear Kinetic Transport Equations: The Line Source Benchmark , 2013 .

[20]  Zachary J. Grant,et al.  Implicit and Implicit–Explicit Strong Stability Preserving Runge–Kutta Methods with High Linear Order , 2017, Journal of Scientific Computing.

[21]  E. Richard Cohen,et al.  Neutron Transport Theory , 1959 .

[22]  Xiangxiong Zhang,et al.  Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: survey and new developments , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  B. Perthame Second-order Boltzmann schemes for compressible Euler equations in one and two space dimensions , 1992 .

[24]  Jan S. Hesthaven,et al.  Spectral Methods for Time-Dependent Problems: Contents , 2007 .

[25]  Luc Mieussens,et al.  Analysis of an Asymptotic Preserving Scheme for Linear Kinetic Equations in the Diffusion Limit , 2009, SIAM J. Numer. Anal..

[26]  Kerstin Küpper,et al.  Convergence of filtered spherical harmonic equations for radiation transport , 2016 .

[27]  E. Lewis,et al.  Computational Methods of Neutron Transport , 1993 .

[28]  Cory D. Hauck,et al.  Oscillatory behavior of asymptotic-preserving splitting methods for a linear model of diffusive relaxation , 2008 .

[29]  J. Keller,et al.  Asymptotic solution of neutron transport problems for small mean free paths , 1974 .

[30]  Luciano Rezzolla,et al.  A new spherical harmonics scheme for multi-dimensional radiation transport I. Static matter configurations , 2012, J. Comput. Phys..

[31]  C. DeWitt-Morette,et al.  Mathematical Analysis and Numerical Methods for Science and Technology , 1990 .

[32]  Jean-Luc Guermond,et al.  Asymptotic Analysis of Upwind Discontinuous Galerkin Approximation of the Radiative Transport Equation in the Diffusive Limit , 2010, SIAM J. Numer. Anal..

[33]  G. C. Pomraning The Equations of Radiation Hydrodynamics , 2005 .

[34]  Bruno Després,et al.  Design of asymptotic preserving finite volume schemes for the hyperbolic heat equation on unstructured meshes , 2012, Numerische Mathematik.

[35]  Laurent Gosse,et al.  Asymptotic-preserving & well-balanced schemes for radiative transfer and the Rosseland approximation , 2004, Numerische Mathematik.

[36]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[37]  Lorenzo Pareschi,et al.  Implicit-Explicit Runge-Kutta Schemes for Hyperbolic Systems and Kinetic Equations in the Diffusion Limit , 2013, SIAM J. Sci. Comput..

[38]  Tao Xiong,et al.  Analysis of Asymptotic Preserving DG-IMEX Schemes for Linear Kinetic Transport Equations in a Diffusive Scaling , 2013, SIAM J. Numer. Anal..

[39]  S. M. Deshpande,et al.  Kinetic theory based new upwind methods for inviscid compressible flows , 1986 .

[40]  R. LeVeque Numerical methods for conservation laws , 1990 .

[41]  Ryan G. McClarren,et al.  The effects of slope limiting on asymptotic-preserving numerical methods for hyperbolic conservation laws , 2008, J. Comput. Phys..

[42]  Shi Jin,et al.  Uniformly Accurate Diffusive Relaxation Schemes for Multiscale Transport Equations , 2000, SIAM J. Numer. Anal..

[43]  Edward W. Larsen,et al.  Advances in Discrete-Ordinates Methodology , 2010 .

[44]  Edward W. Larsen,et al.  Fast iterative methods for discrete-ordinates particle transport calculations , 2002 .

[45]  E. Larsen,et al.  Asymptotic solutions of numerical transport problems in optically thick, diffusive regimes II , 1989 .

[46]  Xiangxiong Zhang,et al.  Asymptotic-Preserving and Positivity-Preserving Implicit-Explicit Schemes for the Stiff BGK Equation , 2017, SIAM J. Numer. Anal..

[47]  James Paul Holloway,et al.  Two-dimensional time dependent Riemann solvers for neutron transport , 2005 .

[48]  Ryan G. McClarren,et al.  Positive PN Closures , 2010, SIAM J. Sci. Comput..

[49]  Tong Wu,et al.  Steady State and Sign Preserving Semi-Implicit Runge-Kutta Methods for ODEs with Stiff Damping Term , 2015, SIAM J. Numer. Anal..

[50]  Jacques-Louis Lions,et al.  Mathematical Analysis and Numerical Methods for Science and Technology: Volume 5 Evolution Problems I , 1992 .

[51]  Inmaculada Higueras,et al.  Positivity-preserving and entropy-decaying IMEX methods , 2006 .

[52]  Tao Xiong,et al.  High order asymptotic preserving nodal discontinuous Galerkin IMEX schemes for the BGK equation , 2014, J. Comput. Phys..

[53]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[54]  Stanley Osher,et al.  Nonoscillatory high order accurate self-similar maximum principle satisfying shock capturing schemes I , 1996 .

[55]  Marvin L. Adams,et al.  Discontinuous Finite Element Transport Solutions in Thick Diffusive Problems , 2001 .

[56]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[57]  Sibylle Günter,et al.  Modelling of heat transport in magnetised plasmas using non-aligned coordinates , 2005 .

[58]  Luc Mieussens,et al.  A New Asymptotic Preserving Scheme Based on Micro-Macro Formulation for Linear Kinetic Equations in the Diffusion Limit , 2008, SIAM J. Sci. Comput..

[59]  Lorenzo Pareschi,et al.  Numerical Schemes for Hyperbolic Systems of Conservation Laws with Stiff Diffusive Relaxation , 2000, SIAM J. Numer. Anal..

[60]  Benjamin Seibold,et al.  StaRMAP---A Second Order Staggered Grid Method for Spherical Harmonics Moment Equations of Radiative Transfer , 2012, ACM Trans. Math. Softw..

[61]  Moustafa T. Chahine,et al.  Foundations of Radiation Hydrodynamics (Dimitri Mihalas and Barbara Weibel Mihalas) , 1987 .

[62]  Lorenzo Pareschi,et al.  Diffusive Relaxation Schemes for Multiscale Discrete-Velocity Kinetic Equations , 1998 .