1D morphodynamic modelling using a simplified grain size description

ABSTRACT This paper introduces an 1D numerical code RubarBE for hydraulic and mobile-bed simulations. The code's ability to reproduce the downstream fining of a gravel–sand mixture in response to bed aggradation is tested against laboratory experiments. Unlike in most numerical models, grain size distribution in each sediment layer is not represented using a multi-class model, but using the median diameter and a sorting coefficient σ. The comparison of numerical results with experimental data shows that the adaptation length , classically used for non-equilibrium sediment transport, is an essential parameter of the model to accurately reproduce the evolution of the deposit front. Empirical laws for adjustments of and σ are proposed to reproduce sediment sorting through two grain-size related adaptation lengths (, ). They are scaled by the length of the reach in morphological equilibrium, which is a useful result for field applications.

[1]  R. Müller,et al.  Formulas for Bed-Load transport , 1948 .

[2]  I. V. Egiazaroff,et al.  Calculation of Nonuniform Sediment Concentrations , 1965 .

[3]  Muneo Hirano,et al.  RIVER-BED DEGRADATION WITH ARMORING , 1971 .

[4]  Robert G. Bell,et al.  Nonequilibrium Bedload Transport by Steady Flows , 1983 .

[5]  M. Tubino,et al.  Finite-amplitude alternate bars , 1987, Journal of Fluid Mechanics.

[6]  F. Holly,et al.  Modeling of Riverbed Evolution for Bedload Sediment Mixtures , 1989 .

[7]  Alex J. Sutherland,et al.  Spatial lag effects in bed load sediment transport , 1989 .

[8]  G. Parker Surface-based bedload transport relation for gravel rivers , 1990 .

[9]  G. Parker Selective Sorting and Abrasion of River Gravel. I: Theory , 1991 .

[10]  Rudy Slingerland,et al.  Routing of Heterogeneous Sediments over Movable Bed: Model Development , 1992 .

[11]  J. Bridge,et al.  Routing of Heterogeneous Sediments over Movable Bed: Model Verification , 1992 .

[12]  N. Standish,et al.  Porosity Calculation of Binary Mixtures of Nonspherical Particles , 1993 .

[13]  R. Ferguson,et al.  Numerical simulation of downstream fining by selective transport in gravel bed rivers: Model development and illustration , 1994 .

[14]  C. Paola,et al.  Grain Size Patchiness as a Cause of Selective Deposition and Downstream Fining , 1995 .

[15]  C. Paola,et al.  Numerical simulation of aggradation and downstream fining , 1996 .

[16]  G. Silvio,et al.  TRANSFER FUNCTION FOR THE DEPOSITION OF POORLY SORTED GRAVEL IN RESPONSE TO STREAMBED AGGRADATION , 2010 .

[17]  P. Wilcock,et al.  Experiments on Downstream Fining of Gravel: I. Narrow-Channel Runs , 1997 .

[18]  G. Parker,et al.  The arrested gravel front: stable gravel-sand transitions in rivers Part 2: General numerical solution , 1998 .

[19]  R. Ferguson,et al.  Tracer‐pebble movement along a concave river profile: Virtual velocity in relation to grain size and shear stress , 1998 .

[20]  G. Parker,et al.  The arrested gravel front: stable gravel-sand transitions in rivers Part 1: Simplified analytical solution , 1998 .

[21]  David J. Williams,et al.  A worldwide correlation for exponential bed particle size variation in subaerial aqueous flows , 1999 .

[22]  Carlos M. Toro-Escobar,et al.  Experiments on Downstream Fining of Gravel. II: Wide and Sandy Runs , 2000 .

[23]  Belleudy,et al.  Numerical simulation of sediment mixture deposition part 1: analysis of a flume experiment , 2000 .

[24]  Yafei Jia,et al.  Nonuniform sediment transport in alluvial rivers , 2000 .

[25]  Ph. Belleudy,et al.  Numerical simulation of sediment mixture deposition part 2 : a sensitivity analysis , 2001 .

[26]  Michael Church,et al.  Fluvial aggradation in Vedder River: Testing a one‐dimensional sedimentation model , 2001 .

[27]  D. Hicks,et al.  Downstream fining in a rapidly aggrading gravel bed river , 2001 .

[28]  N. Surian Downstream variation in grain size along an Alpine river: analysis of controls and processes , 2002 .

[29]  P. Wilcock,et al.  Surface-based Transport Model for Mixed-Size Sediment , 2003 .

[30]  Weiming Wu,et al.  One-dimensional numerical model for nonuniform sediment transport under unsteady flows in channel networks , 2004 .

[31]  S. Wright,et al.  Modeling downstream fining in sand-bed rivers. II: application , 2005 .

[32]  Magnus Larson,et al.  A general formula for non-cohesive bed load sediment transport , 2005 .

[33]  Weiming Wu,et al.  One-Dimensional Modeling of Dam-Break Flow over Movable Beds , 2007 .

[34]  E. Langendoen,et al.  Modeling the Evolution of Incised Streams: I. Model Formulation and Validation of Flow and Streambed Evolution Components , 2008 .

[35]  André Paquier,et al.  One-dimensional numerical modelling of dam-break waves over movable beds: application to experimental and field cases , 2008 .

[36]  Weiming Wu,et al.  One-dimensional explicit finite-volume model for sediment transport , 2008 .

[37]  A. Paquier,et al.  A Model for Bed-Load Transport and Morphological Evolution in Rivers:Description and Pertinence , 2008 .

[38]  A. Blom Different approaches to handling vertical and streamwise sorting in modeling river morphodynamics , 2008 .

[39]  A. Paquier,et al.  One‐dimensional numerical modeling of sediment transport and bed deformation in open channels , 2009 .

[40]  S. Albanis A ONE-DIMENSIONAL MODEL FOR THE TRANSPORT OF A SEDIMENT MIXTURE IN NON-EQUILIBRIUM CONDITIONS , 2010 .

[41]  G. Silvio,et al.  A DEPTH-INTEGRATED MODEL FOR SUSPENDED SEDIMENT TRANSPORT , 2010 .

[42]  Octavio E. Sequeiros,et al.  River morphodynamics with creation/consumption of grain size stratigraphy 2: numerical model , 2010 .

[43]  A. Paquier,et al.  Assessment of Methods Used in 1D Models for Computing Bed-Load Transport in a Large River: The Danube River in Slovakia , 2011 .

[44]  André Paquier,et al.  Applicability of Sediment Transport Capacity Formulas to Dam-Break Flows over Movable Beds , 2011 .

[45]  A. Recking Simple Method for Calculating Reach-Averaged Bed-Load Transport , 2013 .

[46]  A. Siviglia,et al.  Mathematical analysis of the Saint‐Venant‐Hirano model for mixed‐sediment morphodynamics , 2014 .

[47]  G. Pender,et al.  Well-balanced numerical modelling of non-uniform sediment transport in alluvial rivers , 2015 .

[48]  S. Rodrigues,et al.  On the estimation of the bed-material transport and budget along a river segment: application to the Middle Loire River, France , 2015, Aquatic Sciences.