Holographic femtosecond laser processing using optimal-rotation-angle method with compensation of spatial frequency response of liquid crystal spatial light modulator.

Holographic femtosecond laser processing performs high-speed parallel processing using a computer-generated hologram (CGH) displayed on a liquid crystal spatial light modulator. A critical issue is to precisely control the intensities of the diffraction peaks of the CGH. We propose a method of compensating for the spatial frequency response in the design of CGH using the optimal-rotation-angle method. By applying the proposed method, the uniformity of the diffraction peaks was improved. We demonstrate holographic femtosecond laser processing with two-dimensional and three-dimensional parallelism.

[1]  Nobuo Nishida,et al.  Variable holographic femtosecond laser processing by use of a spatial light modulator , 2005 .

[2]  Pedro Andrés,et al.  High spatiotemporal resolution in multifocal processing with femtosecond laser pulses. , 2006, Optics letters.

[3]  Bump formation on a glass surface with a transparent coating using femtosecond laser processing , 2006 .

[4]  A. Tünnermann,et al.  Femtosecond, picosecond and nanosecond laser ablation of solids , 1996 .

[5]  K. Midorikawa,et al.  Ablation of polymer films by a femtosecond high-peak-power Ti:sapphire laser at 798 nm , 1994 .

[6]  Shuhei Tanaka,et al.  Arbitrary micropatterning method in femtosecond laser microprocessing using diffractive optical elements. , 2004, Optics express.

[7]  Joseph S. Hayden,et al.  Waveguide fabrication in phosphate glasses using femtosecond laser pulses , 2003 .

[8]  Eric Audouard,et al.  Programmable focal spot shaping of amplified femtosecond laser pulses. , 2005, Optics letters.

[9]  Saulius Juodkazis,et al.  Femtosecond laser microfabrication of periodic structures using a microlens array , 2005 .

[10]  Gerard Mourou,et al.  Laser‐induced breakdown by impact ionization in SiO2 with pulse widths from 7 ns to 150 fs , 1994 .

[11]  Y. Hayasaki,et al.  Spatial and Temporal Properties of a Nonlinear Optical Feedback System , 2001 .

[12]  Saulius Juodkazis,et al.  Multiphoton fabrication of periodic structures by multibeam interference of femtosecond pulses , 2003 .

[13]  E. Mazur,et al.  Ultrafast-laser driven micro-explosions in transparent materials , 1997 .

[14]  J. P. Callan,et al.  Three-dimensional optical storage inside transparent materials. , 1996, Optics letters.

[15]  J Bengtsson Kinoform design with an optimal-rotation-angle method. , 1994, Applied optics.

[16]  Nobuo Nishida,et al.  Holographic femtosecond laser processing with multiplexed phase Fresnel lenses. , 2006, Optics letters.

[17]  Tsuneo Mitsuyu,et al.  Photowritten optical waveguides in various glasses with ultrashort pulse laser , 1997 .

[18]  K. Miura,et al.  Writing waveguides in glass with a femtosecond laser. , 1996, Optics letters.

[19]  Hirotsugu Yamamoto,et al.  Self-scanning of isolated spots in a nonlinear optical system with two-dimensional feedback , 2000 .

[20]  J. Huignard,et al.  100-kHz diffraction-limited femtosecond laser micromachining , 2005 .

[21]  Method for reducing debris and thermal destruction in femtosecond laser processing by applying transparent coating , 2006 .

[22]  Oppo,et al.  Pattern formation in a liquid-crystal light valve with feedback, including polarization, saturation, and internal threshold effects. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[23]  Kazuyoshi Itoh,et al.  Multilevel phase-type diffractive lenses in silica glass induced by filamentation of femtosecond laser pulses. , 2004, Optics letters.