Shaped On–Off Keying Using Polar Codes

The probabilistic shaping scheme by Honda and Yamamoto (2013) for polar codes is used to enable power-efficient signaling for on–off keying (OOK). As OOK has a non-symmetric optimal input distribution, shaping approaches that are based on the concatenation of a distribution matcher followed by systematic encoding do not result in optimal signaling. Instead, these approaches represent a time-sharing scheme, where only a fraction of the codeword symbols is shaped. The proposed scheme uses a polar code for joint distribution matching and forward error correction which enables asymptotically optimal signaling. Numerical simulations show a gain of 1.8 dB compared to uniform transmission at a spectral efficiency of 0.25 bits/channel use for a blocklength of 65 536 bits.

[1]  Ido Tal,et al.  Greedy-merge degrading has optimal power-law , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[2]  G. David Forney Trellis shaping , 1992, IEEE Trans. Inf. Theory.

[3]  Ieee Microwave Theory,et al.  IEEE Standard for Local and Metropolitan Area Networks Part 16: Air Interface for Fixed Broadband Wireless Access Systems Draft Amendment: Management Information Base Extensions , 2007 .

[4]  R. Gallager Information Theory and Reliable Communication , 1968 .

[5]  Erdal Arikan,et al.  Channel Polarization: A Method for Constructing Capacity-Achieving Codes for Symmetric Binary-Input Memoryless Channels , 2008, IEEE Transactions on Information Theory.

[6]  Wen Xu,et al.  Shaped Polar Codes for Higher Order Modulation , 2018, IEEE Communications Letters.

[7]  Fabian Steiner,et al.  Protograph-Based LDPC Code Design for Probabilistic Shaping with On-Off Keying , 2019, 2019 53rd Annual Conference on Information Sciences and Systems (CISS).

[8]  Rüdiger L. Urbanke,et al.  How to achieve the capacity of asymmetric channels , 2014, 2014 52nd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[9]  Gianluigi Liva,et al.  Code Design for Short Blocks: A Survey , 2016, ArXiv.

[10]  Patrick Schulte,et al.  Divergence scaling of fixed-length, binary-output, one-to-one distribution matching , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[11]  Patrick Schulte,et al.  Bandwidth Efficient and Rate-Matched Low-Density Parity-Check Coded Modulation , 2015, IEEE Transactions on Communications.

[12]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[13]  Alexander Vardy,et al.  List decoding of polar codes , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.

[14]  Fabian Steiner,et al.  Probabilistic Parity Shaping for Linear Codes , 2019, ArXiv.

[15]  Rudolf Mathar,et al.  Capacity achieving probabilistic shaping for noisy and noiseless channels , 2012 .

[16]  Patrick Schulte,et al.  Constant Composition Distribution Matching , 2015, IEEE Transactions on Information Theory.

[17]  Remi A. Chou,et al.  Using deterministic decisions for low-entropy bits in the encoding and decoding of polar codes , 2015, 2015 53rd Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[18]  Norbert Stolte,et al.  Rekursive Codes mit der Plotkin-Konstruktion und ihre Decodierung , 2002 .

[19]  Junya Honda,et al.  Polar Coding Without Alphabet Extension for Asymmetric Models , 2013, IEEE Transactions on Information Theory.

[20]  Alexander Vardy,et al.  How to Construct Polar Codes , 2011, IEEE Transactions on Information Theory.

[21]  Edward A. Ratzer,et al.  Error-Correction on Non-Standard Communication Channels , 2013 .

[22]  Georg Böcherer,et al.  Polar-Coded Pulse Position Modulation for the Poisson Channel , 2018, 2018 9th Advanced Satellite Multimedia Systems Conference and the 15th Signal Processing for Space Communications Workshop (ASMS/SPSC).

[23]  Gonzalo Vazquez-Vilar,et al.  Saddlepoint approximations of lower and upper bounds to the error probability in channel coding , 2018, 2018 52nd Annual Conference on Information Sciences and Systems (CISS).