Local projection type stabilization applied to inf–sup stable discretizations of the Oseen problem

The local projection method is applied to inf-sup stable discretisations of the Oseen problem. Error bounds of order r are proven for known inf-sup stable pairs of finite element spaces which approximate velocity and pressure by elements of order r and r− 1, respectively. In case of a positive reaction coefficient, the error constants are robust with respect to the viscosity but depend on the positive lower bound of the reaction coefficient. Using enriched velocity spaces, error estimates of order r are established which are also robust when both the viscosity and the reaction coefficient tend to zero. Moreover, for certain velocity and pressure approximations by elements of order r, the discrete inf-sup condition holds and a robust error estimate of improved order r+ 1/2 is shown. Numerical results confirm the theoretical convergence results.

[1]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[2]  D. Braess,et al.  An efficient smoother for the Stokes problem , 1997 .

[3]  Maxim A. Olshanskii,et al.  Stabilized finite element schemes with LBB-stable elements for incompressible flows , 2005 .

[4]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[5]  Gunar Matthies,et al.  Local projection stabilization of equal order interpolation applied to the Stokes problem , 2008, Math. Comput..

[6]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[7]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[8]  L. R. Scott,et al.  A quasi-local interpolation operator¶preserving the discrete divergence , 2003 .

[9]  M. Fortin,et al.  A stable finite element for the stokes equations , 1984 .

[10]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[11]  Gunar Matthies,et al.  The Inf-Sup Condition for the Mapped Qk−Pk−1disc Element in Arbitrary Space Dimensions , 2002, Computing.

[12]  G. Lube,et al.  STABILIZED FEM FOR INCOMPRESSIBLE FLOW. CRITICAL REVIEW AND NEW TRENDS , 2006 .

[13]  Lutz Tobiska,et al.  A modified streamline diffusion method for solving the stationary Navier-Stokes equation , 1991 .

[14]  Douglas N. Arnold,et al.  Approximation by quadrilateral finite elements , 2000, Math. Comput..

[15]  G. Lube,et al.  Local projection stabilization for incompressible flows: equal-order vs. inf-sup stable interpolation. , 2008 .

[16]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[17]  L. Franca,et al.  Stabilized finite element methods. II: The incompressible Navier-Stokes equations , 1992 .

[18]  Maxim A. Olshanskii,et al.  Grad-div stablilization for Stokes equations , 2003, Math. Comput..

[19]  T. Hughes,et al.  Streamline upwind/Petrov-Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations , 1990 .

[20]  Gunar Matthies,et al.  Mass conservation of finite element methods for coupled flow-transport problems , 2007, Int. J. Comput. Sci. Math..

[21]  Gunar Matthies,et al.  Mapped Finite Elements on Hexahedra. Necessary and Sufficient Conditions for Optimal Interpolation Errors , 2001, Numerical Algorithms.

[22]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[23]  Gunar Matthies,et al.  MooNMD – a program package based on mapped finite element methods , 2004 .

[24]  S. Mittal,et al.  Incompressible flow computations with stabilized bilinear and linear equal-order-interpolation velocity-pressure elements , 1992 .

[25]  Gunar Matthies,et al.  On the reference mapping for quadrilateral and hexahedral finite elements on multilevel adaptive grids , 2007, Computing.

[26]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[27]  Maxim A. Olshanskii,et al.  Grad–div stabilization and subgrid pressure models for the incompressible Navier–Stokes equations , 2009 .

[28]  R. A. Nicolaides,et al.  STABILITY OF FINITE ELEMENTS UNDER DIVERGENCE CONSTRAINTS , 1983 .

[29]  Erik Burman,et al.  Stabilized finite element schemes for incompressible flow using Scott--Vogelius elements , 2008 .

[30]  T. Hughes,et al.  A new finite element formulation for computational fluid dynamics: V. Circumventing the Babuscka-Brezzi condition: A stable Petrov-Galerkin formulation of , 1986 .

[31]  Shangyou Zhang,et al.  A new family of stable mixed finite elements for the 3D Stokes equations , 2004, Math. Comput..

[32]  Jean E. Roberts,et al.  Mixed and hybrid finite element methods , 1987 .

[33]  L. Franca,et al.  Stabilized Finite Element Methods , 1993 .

[34]  Peter Hansbo,et al.  A velocity-pressure streamline diffusion finite element method for the incompressible Navier-Stokes equation , 1990 .

[35]  Jukka Saranen,et al.  Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations , 1986 .