The Nonparametric Kernel Bayes Smoother

Recently, significant progress has been made developing kernel mean expressions for Bayesian inference. An important success in this domain is the nonparametric kernel Bayes’ filter (nKB-filter), which can be used for sequential inference in state space models. We expand upon this work by introducing a smoothing algorithm, the nonparametric kernel Bayes’ smoother (nKB-smoother) which relies on kernel Bayesian inference through the kernel sum rule and kernel Bayes’ rule. We derive the smoothing equations, analyze the computational cost, and show smoothing consistency. We summarize the algorithm, which is simple to implement, requiring only matrix multiplications and the output of the nKB-filter. Finally, we report experimental results that compare the nKB-smoother to previous parametric and nonparametric approaches to Bayesian filtering and smoothing. In the supplementary materials, we show that the combination of the nKB-filter and the nKB-smoother allows marginal kernel mean computation, which gives an alternative to kernel belief propagation.

[1]  Byron Boots,et al.  Learning predictive models of a depth camera & manipulator from raw execution traces , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[2]  Le Song,et al.  Kernel Bayes' rule: Bayesian inference with positive definite kernels , 2013, J. Mach. Learn. Res..

[3]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[4]  Carl E. Rasmussen,et al.  Robust Filtering and Smoothing with Gaussian Processes , 2012, IEEE Transactions on Automatic Control.

[5]  Le Song,et al.  A Hilbert Space Embedding for Distributions , 2007, Discovery Science.

[6]  Byron Boots,et al.  Spectral Approaches to Learning Predictive Representations , 2011 .

[7]  Tomoharu Iwata,et al.  Latent Support Measure Machines for Bag-of-Words Data Classification , 2014, NIPS.

[8]  Fabio Tozeto Ramos,et al.  Multi-modal estimation with kernel embeddings for learning motion models , 2013, 2013 IEEE International Conference on Robotics and Automation.

[9]  Uwe D. Hanebeck,et al.  Analytic moment-based Gaussian process filtering , 2009, ICML '09.

[10]  Lachlan McCalman Function Embeddings for Multi-modal Bayesian Inference , 2013 .

[11]  Dieter Fox,et al.  GP-BayesFilters: Bayesian filtering using Gaussian process prediction and observation models , 2008, IROS.

[12]  Kevin P. Murphy,et al.  Space-Efficient Inference in Dynamic Probabilistic Networks , 1997, IJCAI.

[13]  Le Song,et al.  Kernel Belief Propagation , 2011, AISTATS.

[14]  Bernhard Schölkopf,et al.  Kernel Measures of Conditional Dependence , 2007, NIPS.

[15]  Michael I. Jordan,et al.  Dimensionality Reduction for Supervised Learning with Reproducing Kernel Hilbert Spaces , 2004, J. Mach. Learn. Res..

[16]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[17]  Bernhard Schölkopf,et al.  Learning from Distributions via Support Measure Machines , 2012, NIPS.

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  Arthur Gretton,et al.  Consistent Nonparametric Tests of Independence , 2010, J. Mach. Learn. Res..

[20]  Le Song,et al.  Hilbert Space Embeddings of Hidden Markov Models , 2010, ICML.

[21]  Guy Lever,et al.  Modelling transition dynamics in MDPs with RKHS embeddings , 2012, ICML.

[22]  Kenji Fukumizu,et al.  Hilbert Space Embeddings of POMDPs , 2012, UAI.

[23]  Marc Toussaint,et al.  Path Integral Control by Reproducing Kernel Hilbert Space Embedding , 2013, IJCAI.

[24]  H. Rauch Solutions to the linear smoothing problem , 1963 .

[25]  Byron Boots,et al.  Hilbert Space Embeddings of Predictive State Representations , 2013, UAI.

[26]  Alexander J. Smola,et al.  Hilbert space embeddings of conditional distributions with applications to dynamical systems , 2009, ICML '09.

[27]  Guy Lever,et al.  Conditional mean embeddings as regressors , 2012, ICML.

[28]  Kenji Fukumizu,et al.  Monte Carlo Filtering Using Kernel Embedding of Distributions , 2014, AAAI.

[29]  K. Fukumizu,et al.  Kernel Embeddings of Conditional Distributions: A Unified Kernel Framework for Nonparametric Inference in Graphical Models , 2013, IEEE Signal Process. Mag..

[30]  Le Song,et al.  A unified kernel framework for nonparametric inference in graphical models ] Kernel Embeddings of Conditional Distributions , 2013 .

[31]  Thia Kirubarajan,et al.  Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software , 2001 .