Oracles and Quantifiers

We describe a general way of building logics with Lindstrom quantifiers, which capture regular complexity classes on ordered structures with polysize reductions. We then extend this method so as to accommodate complexity classes based on oracle Turing machines. Our main result shows an equivalence between enhancing a logic with a Lindstrom quantifier and enhancing a complexity class with an oracle such that, if K is a set of structures, Q K the associated Lindstrom quantifier and L a logic that captures a complexity class D, then the enhanced logic L[K] captures D K — the complexity class of machines in D using oracles for K. Our results are sensitive to the oracle computation model and hold in a natural modification of the unbounded model introduced by Buss [Bus88]. They do not hold in the, so called, space bounded oracle models or those that violate the ‘relativization thesis’ of Buss. Our results generalize and extend previous results of Stewart [Ste93a, Ste93b] and Makowsky and Pnueli [MP93].

[1]  Nancy A. Lynch Log Space Machines with Multiple Oracle Tapes , 1978, Theor. Comput. Sci..

[2]  Neil Immerman,et al.  The Complexity of Iterated Multiplication , 1995, Inf. Comput..

[3]  Robert E. Tarjan,et al.  A combinatorial problem which is complete in polynomial space , 1975, STOC.

[4]  Jacobo Torán,et al.  Computing Functions with Parallel Queries to NP , 1995, Theor. Comput. Sci..

[5]  Lauri Hella,et al.  Definability Hierarchies of Generalized Quantifiers , 1989, Ann. Pure Appl. Log..

[6]  Elias Dahlhaus,et al.  Reduction to NP-complete problems by interpretations , 1983, Logic and Machines.

[7]  Iain A. Stewart,et al.  Comparing the Expressibility of Languages Formed using NP-Complete Operators , 1991, J. Log. Comput..

[8]  Lauri Hella,et al.  Logical hierarchies in PTIME , 1992, [1992] Proceedings of the Seventh Annual IEEE Symposium on Logic in Computer Science.

[9]  Neil Immerman,et al.  Languages that Capture Complexity Classes , 1987, SIAM J. Comput..

[10]  守屋 悦朗,et al.  J.E.Hopcroft, J.D. Ullman 著, "Introduction to Automata Theory, Languages, and Computation", Addison-Wesley, A5変形版, X+418, \6,670, 1979 , 1980 .

[11]  Jeffrey D. Ullman,et al.  Introduction to Automata Theory, Languages and Computation , 1979 .

[12]  Anuj Dawar Generalized Quantifiers and Logical Reducibilities , 1995, J. Log. Comput..

[13]  Larry J. Stockmeyer,et al.  Classifying the computational complexity of problems , 1987, The Journal of Symbolic Logic.

[14]  Iain A. Stewart,et al.  Logical Characterizations of Bounded Query Classes I: Logspace Oracle Machines , 1992, Fundam. Informaticae.

[15]  David Harel,et al.  Computable Queries for Relational Data Bases , 1980, J. Comput. Syst. Sci..

[16]  Iain A. Stewart,et al.  Logical Characterizations of Bounded Query Classes II: Polynomial-Time Oracle Machines , 1992, Fundam. Informaticae.

[17]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[18]  Ronald Fagin Generalized first-order spectra, and polynomial. time recognizable sets , 1974 .

[19]  Neil Immerman Nondeterministic Space is Closed Under Complementation , 1988, SIAM J. Comput..

[20]  Klaus W. Wagner,et al.  Bounded Query Classes , 1990, SIAM J. Comput..

[21]  Janos Simon,et al.  Space-Bounded Hierarchies and Probabilistic Computations , 1984, J. Comput. Syst. Sci..

[22]  Jacobo Torán,et al.  Computing functions with parallel queries to NP , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[23]  Chen C. Chang,et al.  Model Theory: Third Edition (Dover Books On Mathematics) By C.C. Chang;H. Jerome Keisler;Mathematics , 1966 .

[24]  Iain A. Stewart,et al.  Using the Hamiltonian Path Operator to Capture NP , 1990, J. Comput. Syst. Sci..

[25]  Neil Immerman,et al.  Relational queries computable in polynomial time (Extended Abstract) , 1982, STOC '82.

[26]  Jonathan F. Buss,et al.  Relativized Alternation and Space-Bounded Computation , 1988, J. Comput. Syst. Sci..

[27]  Istvan Simon On some subrecursive reducibilities , 1977 .

[28]  David Harel,et al.  Structure and Complexity of Relational Queries , 1980, FOCS.

[29]  David S. Johnson,et al.  A Catalog of Complexity Classes , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[30]  Iain A. Stewart,et al.  Context-Sensitive Transitive Closure Operators , 1994, Ann. Pure Appl. Log..

[31]  Neil Immerman,et al.  Expressibility and Parallel Complexity , 1989, SIAM J. Comput..

[32]  Perlindström First Order Predicate Logic with Generalized Quantifiers , 1966 .

[33]  Moshe Y. Vardi The complexity of relational query languages (Extended Abstract) , 1982, STOC '82.

[34]  Leonard M. Adleman,et al.  Reducibility, randomness, and intractibility (Abstract) , 1977, STOC '77.

[35]  Neil Immerman,et al.  Relational Queries Computable in Polynomial Time , 1986, Inf. Control..

[36]  Bruno Courcelle,et al.  Monadic Second-Order Graph Transductions , 1992, CAAP.

[37]  Christopher B. Wilson Parallel Computation and the NC Hierarchy Relativized , 1986, Computational Complexity Conference.