Poinçonnement symétrique des dalles en béton armé

Punching of reinforced concrete and prestressed slabs is usually a critical failure mode for the design and verification of structures such as flat slabs or bridge slabs. Although codes of practice propose several rules for common cases (usually with an empirical basis), they do not provide a general tool for studying the punching strength because they are not based on a physical model. Furthermore, a better accuracy in the determination of the punching strength is needed when investigating the ultimate load of existing structures. Recently, test results from a series of 10 concrete slabs without punching reinforcement (performed within this thesis) as well as different tests performed by other researchers allowed to check and validate the application limits of a failure criterion proposed by Professor Muttoni for slabs without punching reinforcement. This failure criterion defines the punching strength mainly as a function of the radial rotation of the slab in the vicinity of the column. Even if a punching failure is predominantly a shear failure, the vertical displacements and the plate rotations before failure are governed mainly by the flexural characteristics of the slab. A computational model for the flexural behavior of concrete slabs has been developed, considering the different material non linearities and allowing also to include the effect of prestressing. Finally, both the failure criterion and the computational model are merged into a physical model which is able to determine the punching strength of symmetrical slabs, with any flexural reinforcement layout (prestressed or not). The comparison between theoretical and experimental results shows good agreement, better than provided by current codes of practice. With this physical model, it is also possible to determine the punching strength for particular cases, not covered by building codes. For instance, in the case of an inner column at a flat slab, it is possible to compute the enhanced punching strength due to the restraint effect exerted by the rest of the slab. The model can also be used to determine the failure load of a foundation plate, considering the interaction between the soil pressure and the slab displacement. Furthermore, it is possible to include temperature effects on the punching strength evaluating the loss of resistance due to fire exposure of the slab. The proposed model is very flexible and can easily be adapted to the different cases which an engineer is confronted to. It revealed itself as a very helpful tool for determining the failure load of an existing structure as well as for designing the reinforcement layout for new projects. Within this thesis, only axisymmetrical cases have been studied. To analyse border or edge columns as well as other non symmetrical cases, the model should be adapted.

[1]  S. BRODETSKY,et al.  Theory of Plates and Shells , 1941, Nature.

[2]  Eivind Hognestad,et al.  Shearing Strength of Reinforced Concrete Column Footings , 1953 .

[3]  Eivind Hognestad,et al.  Shearing Strength of Reinforced Concrete Slabs , 1956 .

[4]  S. Kinnunen,et al.  Punching of concrete slabs without shear reinforcement , 1960 .

[5]  Eivind Hognestad,et al.  Sheer Strength of Reinforced Structural Lightweight Aggregate Concrete Slabs , 1964 .

[6]  R. Taylor,et al.  Some tests on the effect of edge restraint on punching shear in reinforced concrete slabs , 1965 .

[7]  W Schaeidt,et al.  BERECHNUNG VON FLACHDECKEN AUF DURCHSTANZEN , 1970 .

[8]  Hiroshi Seki,et al.  Shearing Strength and Cracking in Two-Way Slabs Subjected to Concentrated Load , 1971 .

[9]  John F. Brotchie,et al.  MEMBRANE ACTION IN SLABS , 1971 .

[10]  M. E. Criswell,et al.  Static and Dynamic Response of Reinforced Concrete Slab-Column Connections , 1974 .

[11]  Jean Pralong,et al.  Schubversuche an Stahlbeton-Platten , 1977 .

[12]  J. Walraven Fundamental Analysis of Aggregate Interlock , 1981 .

[13]  P. Marti Gleichgewichtslösungen für Flachdecken , 1981 .

[14]  R. N. Swamy,et al.  Punching Shear Behavior of Reinforced Slab-Column ConnectionsMade with Steel Fiber Concrete , 1982 .

[15]  Yngve Anderberg Properties of Materials at High Temperatures Steel , 1983 .

[16]  D Noelting DAS DURCHSTANZEN VON PLATTEN AUS STAHLBETON. TRAGVERHALTEN, BERECHNUNG, BEMESSUNG , 1984 .

[17]  P. E. Regan,et al.  Symmetric punching of reinforced concrete slabs , 1986 .

[18]  F. Vecchio,et al.  THE MODIFIED COMPRESSION FIELD THEORY FOR REINFORCED CONCRETE ELEMENTS SUBJECTED TO SHEAR , 1986 .

[19]  Zdenek P. Bazant,et al.  SIZE EFFECT IN PUNCHING SHEAR FAILURE OF SLABS. , 1987 .

[20]  E. Thorenfeldt Mechanical properties of high-strength concrete and applications in design , 1987 .

[21]  Θεοφανησ Γεωργοπουλοσ DURCHSTANZLAST UND DURCHSTANZWINKEL UBER INNENSTUTZEN PUNKTFORMIG GESTUTZTER STAHLBETONPLATTEN UND DEREN SICHERUNG GEGEN PROGRESSIVEN KOLLAPS , 1987 .

[22]  Ulrich Schneider,et al.  Concrete at High Temperatures -- A General Review* , 1988 .

[23]  A. L. Marshall Behaviour of reinforced and prestressed concrete , 1990 .

[24]  F. J. Vecchio,et al.  Membrane action in reinforced concrete slabs , 1990 .

[25]  Carl Erik Broms,et al.  Punching of flat plates : a question of concrete properties in biaxial compression and size effect , 1990 .

[26]  Aurelio Muttoni,et al.  Die Anwendbarkeit der Plastizitätstheorie in der Bemessung von Stahlbeton , 1990 .

[27]  H. Marzouk,et al.  Experimental Investigation on the Behavior of High-Strength Concrete Slabs , 1992 .

[28]  Aurelio Muttoni,et al.  Behavior of Beams and Punching in Slabs without Shear Reinforcement , 1991 .

[29]  Philippe Menetrey Numerical analysis of punching failure in reinforced concrete structures , 1994 .

[30]  N. Banthia,et al.  Behavior of Concrete Slabs Reinforced with Fiber-Reinforced Plastic Grid , 1995 .

[31]  N. J. Gardner,et al.  Punching shear of continuous flat reinforced concrete slabs , 1996 .

[32]  Pietro G. Gambarova,et al.  EFFECTS OF HIGH TEMPERATURE ON THE RESIDUAL COMPRESSIVE STRENGTH OF HIGH-STRENGTH SILICEOUS CONCRETES , 1998 .

[33]  Mikael Hallgren,et al.  Punching Shear Tests of Column Footings , 1998 .

[34]  Gaston Krüger Résistance au poinçonnement excentré des planchers-dalles , 1999 .

[35]  M. Ozawa,et al.  Study on the process of punching shear failure of reinforced concrete slabs , 2000 .

[36]  Luc Taerwe,et al.  Concrete Slabs Reinforced with FRP Grids. II: Punching Resistance , 2000 .

[37]  B. J. Holmgren Punching research history at KTH , 2000 .

[38]  M. P. Nielsen Plasticity approach to punching shear in reinforced concrete , 2000 .

[39]  Wahid Nechnech Contribution à l'étude numérique du comportement du béton et des structures en béton armé soumises à des sollicitations thermiques et mécaniques couplées : une approche thermo-élasto-plastique endommageable , 2000 .

[40]  M. Osman,et al.  BEHAVIOR OF HIGH-STRENGTH LIGHTWEIGHT CONCRETE SLABS UNDER PUNCHING LOADS , 2000 .

[41]  C.-C. Chen,et al.  An experimental study on the punching shear behaviour of RC slabs strengthened by GFRP , 2000 .

[42]  H. Sundquist Punching of bridge slabs with a special reference to non-symmetrical moment distribution, non-eccentric column load and scale effect , 2000 .

[43]  D. Nölting Durchstanzbemessung bei ausmittiger Stützenlast , 2001 .

[44]  Cv Nielsen,et al.  Theoretical model of high temperature effects on uniaxial concrete member under elastic restraint , 2002 .

[45]  Binsheng Zhang,et al.  Residual Fracture Toughness of Normal- andHigh-Strength Gravel Concrete after Heating to 600 °C , 2002 .

[46]  Johan Silfwerbrand,et al.  Punching shear capacity of RC slabs , 2002 .

[47]  M. Sultan,et al.  EFFECT OF TEMPERATURE ON THERMAL PROPERTIES OF HIGH-STRENGTH CONCRETE , 2003 .

[48]  Oguzhan Bayrak,et al.  Punching shear strengthening of reinforced concrete flat plates using carbon fiber reinforced polymers , 2003 .

[49]  Aurelio Muttoni,et al.  Schubfestigkeit und Durchstanzen von Platten ohne Querkraftbewehrung , 2003 .

[50]  M. Timm Durchstanzen von Bodenplatten unter rotationssymmetrischer Belastung , 2003 .

[51]  Mohamed H. Harajli,et al.  Shear Strengthening of Interior Slab–Column Connections Using Carbon Fiber-Reinforced Polymer Sheets , 2003 .

[52]  Xudong Shi,et al.  Influence of Concrete Cover on Fire Resistance of Reinforced Concrete Flexural Members , 2004 .

[53]  Aurelio Muttoni,et al.  Conception et dimensionnement des éléments de structures, béton armé , 2004 .

[54]  Aurelio Muttoni,et al.  Influence des déformations plastiques de l'armature de flexion sur la résistance à l'effort tranchant des poutres sans étriers. Rapport d'essai , 2004 .

[55]  Maria Anna Polak,et al.  Punching shear in reinforced concrete slabs , 2005 .

[56]  Cheng-Chih Chen,et al.  Punching shear strength of reinforced concrete slabs strengthened with glass fiber-reinforced polymer laminates , 2005 .

[57]  Aurelio Muttoni,et al.  Deckeneinsturz der Tiefgarage am Staldenacker in Gretzenbach , 2005 .

[58]  J. Ožbolt,et al.  Instationäres 3D Thermo‐mechanisches Modell für Beton , 2005 .

[59]  Paul E. Regan,et al.  Punching resistances of unbonded post-tensioned slabs by decompression methods , 2005 .