Phenomenology of light sneutrino dark matter in cMSSM/mSUGRA with inverse seesaw

[1]  E. Nobile Halo-Independent Comparison of Direct Dark Matter Detection Data , 2013, 1404.4130.

[2]  N. Fourches,et al.  Search for low-mass WIMPs with EDELWEISS-II heat-and-ionization detectors , 2012, 1207.1815.

[3]  Alan D. Martin,et al.  Review of Particle Physics (RPP) , 2012 .

[4]  Avelino Vicente,et al.  Enhancing lepton flavour violation in the supersymmetric inverse seesaw beyond the dipole contribution , 2012, 1206.6497.

[5]  M. Hayakawa,et al.  Tenth-order QED contribution to the electron g-2 and an improved value of the fine structure constant. , 2012, Physical review letters.

[6]  J. Valle,et al.  Global status of neutrino oscillation parameters after Neutrino-2012 , 2012, 1205.4018.

[7]  M. Raidal,et al.  Reconstructing Higgs boson properties from the LHC and Tevatron data , 2012, 1203.4254.

[8]  R. Foot Mirror dark matter interpretations of the DAMA, CoGeNT and CRESST-II data , 2012, 1203.2387.

[9]  G. Venanzoni Latest on g-2 from experiment , 2012, 1203.1501.

[10]  H. Baer,et al.  Neutralino dark matter in mSUGRA/CMSSM with a 125 GeV light Higgs scalar , 2012, 1202.4038.

[11]  J. Ellis,et al.  Revisiting the Higgs mass and dark matter in the CMSSM , 2012, 1202.3262.

[12]  L. Roszkowski,et al.  Bayesian Implications of Current LHC Supersymmetry and Dark Matter Detection Searches for the Constrained MSSM , 2012, 1202.1503.

[13]  L. Ibáñez,et al.  A 119-125 GeV Higgs from a string derived slice of the CMSSM , 2012, 1202.0822.

[14]  Sourov Roy,et al.  Exploring novel correlations in trilepton channels at the LHC for the minimal supersymmetric inverse seesaw model , 2012, 1201.1556.

[15]  P. S. Bhupal Dev,et al.  Multi-Lepton Collider Signatures of Heavy Dirac and Majorana Neutrinos , 2011, 1112.6419.

[16]  J. Shelton,et al.  Measuring the invisible Higgs width at the 7 and 8 TeV LHC , 2011, 1112.4496.

[17]  Jin Min Yang,et al.  Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM , 2011, 1112.4391.

[18]  R. Trotta,et al.  Updated global fits of the cMSSM including the latest LHC SUSY and Higgs searches and XENON100 data , 2011, 1112.4192.

[19]  Jonathan L. Feng,et al.  Focus Point Supersymmetry Redux , 2011, 1112.3021.

[20]  M. Battaglia,et al.  Implications of a 125 GeV Higgs for supersymmetric models , 2011, 1112.3028.

[21]  Debottam Das,et al.  Enhanced Higgs mediated lepton flavour violating processes in the supersymmetric inverse seesaw model , 2011, 1111.5836.

[22]  M. Buckley,et al.  Toward a consistent picture for CRESST, CoGeNT, and DAMA , 2011, 1110.5338.

[23]  G. Kalmus,et al.  WIMP-nucleon cross-section results from the second science run of ZEPLIN-III , 2011, 1110.4769.

[24]  J. Zupan,et al.  Light Dark Matter in the light of CRESST-II , 2011, 1110.2721.

[25]  Yi-Fu Cai,et al.  Sneutrino dark matter in gauged inverse seesaw models for neutrinos. , 2011, Physical review letters.

[26]  D. Hauff,et al.  Results from 730 kg days of the CRESST-II Dark Matter search , 2011, 1109.0702.

[27]  C. Sudre,et al.  Final analysis and results of the Phase II SIMPLE dark matter search. , 2011, Physical review letters.

[28]  Werner Porod,et al.  SPheno 3.1: extensions including flavour, CP-phases and models beyond the MSSM , 2011, Comput. Phys. Commun..

[29]  L. A. Granado Cardoso,et al.  Strong constraints on the rare decays B(s)(0) → μ+ μ- and B0 → μ+ μ-. , 2012, Physical review letters.

[30]  Observation of a new boson with a mass near 125 GeV The CMS Collaboration , 2012 .

[31]  Observation of an Excess of Events in the Search for the Standard Model Higgs boson with the ATLAS detector at the LHC , 2012 .

[32]  D. Leith,et al.  Precision measurement of the B → Xs γ photon energy spectrum, branching fraction, and direct CP asymmetry A(CP)((B → X(s+d)γ). , 2012, Physical review letters.

[33]  Sujeet Akula,et al.  Higgs Boson Mass Predictions in SUGRA Unification and Recent LHC-7 Results , 2011 .

[34]  M. Kadastik,et al.  Implications of the 125 GeV Higgs boson for scalar dark matter and for the CMSSM phenomenology , 2011, 1112.3647.

[35]  A. Roeck,et al.  Higgs and supersymmetry , 2011, 1112.3564.

[36]  L. Hall,et al.  A natural SUSY Higgs near 125 GeV , 2011, 1112.2703.

[37]  F. Kahlhoefer,et al.  Resolving astrophysical uncertainties in dark matter direct detection , 2011, 1111.0292.

[38]  T Glanzman,et al.  Constraining dark matter models from a combined analysis of Milky Way satellites with the Fermi Large Area Telescope. , 2011, Physical review letters.

[39]  E. Molinaro,et al.  Common framework for dark matter, leptogenesis, and neutrino masses , 2011, 1108.0482.

[40]  Y. Mambrini Higgs searches and singlet scalar dark matter: Combined constraints from XENON 100 and the LHC , 2011, 1108.0671.

[41]  R. Mohapatra,et al.  Majorana neutrinos from inverse seesaw in warped extra dimension , 2011, 1107.4086.

[42]  A. Mazumdar The origin of dark matter, matter-anti-matter asymmetry, and inflation , 2011, 1106.5408.

[43]  M. Miller,et al.  Search for an annual modulation in a p-type Point Contact germanium dark matter detector. , 2011, Physical review letters.

[44]  B. Mukhopādhyāẏa,et al.  Signals of an invisibly decaying Higgs boson in a scalar dark matter scenario: A study for the Large Hadron Collider , 2011, 1105.5837.

[45]  S. Kraml,et al.  Light sneutrino dark matter at the LHC , 2011, 1105.4878.

[46]  S. R. Golwala,et al.  Combined limits on WIMPs from the CDMS and EDELWEISS experiments , 2011, 1105.3377.

[47]  S. Khalil,et al.  Muon anomalous magnetic moment and μ→eγ in B−L model with inverse seesaw , 2011, 1105.1047.

[48]  C. Winant,et al.  Search for light dark matter in XENON10 data. , 2011, Physical review letters.

[49]  E Aprile,et al.  Dark matter results from 100 live days of XENON100 data. , 2011, Physical review letters.

[50]  T. Ota,et al.  Light neutralino in the MSSM: a playground for dark matter, flavor physics and collider experiments , 2011, 1104.1134.

[51]  S. Petcov,et al.  Low energy signatures of the TeV scale seesaw mechanism , 2011, 1103.6217.

[52]  Jin Min Yang,et al.  Asymmetric Sneutrino Dark Matter in the NMSSM with Minimal Inverse Seesaw , 2011 .

[53]  S. Khalil,et al.  Right-handed sneutrino dark matter in supersymmetric B − L model , 2011, 1102.4249.

[54]  N. Fornengo,et al.  Discussing direct search of dark matter particles in the Minimal Supersymmetric extension of the Standard Model with light neutralinos , 2010, 1011.4743.

[55]  D O Caldwell,et al.  Results from a low-energy analysis of the CDMS II germanium data. , 2010, Physical review letters.

[56]  P. Fox,et al.  Integrating out astrophysical uncertainties , 2010, 1011.1915.

[57]  G. Drake,et al.  Results from a search for light-mass dark matter with a p-type point contact germanium detector. , 2010, Physical review letters.

[58]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL INTERPRETATION , 2011 .

[59]  A. Buras MINIMAL FLAVOUR VIOLATION AND BEYOND: TOWARDS A FLAVOUR CODE FOR SHORT DISTANCE DYNAMICS , 2010, 1012.1447.

[60]  He Zhang,et al.  Non-unitarity effects in a realistic low-scale seesaw model , 2010 .

[61]  A. Pierce,et al.  Light neutralinos with large scattering cross sections in the minimal supersymmetric standard model , 2010, 1003.0682.

[62]  P. Belli,et al.  New results from DAMA/LIBRA , 2010, 1002.1028.

[63]  Edward J. Wollack,et al.  SEVEN-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: POWER SPECTRA AND WMAP-DERIVED PARAMETERS , 2010, 1001.4635.

[64]  D O Caldwell,et al.  Dark Matter Search Results from the CDMS II Experiment , 2009, Science.

[65]  Albert Villanova del Moral,et al.  Minimal supersymmetric inverse seesaw: neutrino masses, lepton flavour violation and LHC phenomenology , 2009, 0910.2435.

[66]  S. Park,et al.  Neutrino mass from a hidden world and its phenomenological implications , 2009, 0909.2937.

[67]  Florian Staub,et al.  From superpotential to model files for FeynArts and CalcHep/CompHep , 2009, Comput. Phys. Commun..

[68]  C. Muñoz,et al.  Calculable inverse-seesaw neutrino masses in supersymmetry , 2009, 0907.1262.

[69]  J. A. Aguilar-Saavedra,et al.  Trilepton signals: the golden channel for seesaw searches at LHC , 2009, 0910.2720.

[70]  S. Bethke EPJ manuscript No. (will be inserted by the editor) The 2009 World Average of αs , 2022 .

[71]  E. Ma Radiative inverse seesaw mechanism for nonzero neutrino mass , 2009 .

[72]  A. Barr,et al.  The race for supersymmetry: Using m T2 for discovery , 2009, 0907.2713.

[73]  Z. Xing,et al.  Non-unitary neutrino mixing and CP violation in the minimal inverse seesaw model , 2009, 0905.2889.

[74]  A. Semenov,et al.  Dark matter direct detection rate in a generic model with micrOMEGAs_2.2 , 2008, Comput. Phys. Commun..

[75]  S. Heinemeyer,et al.  Mass bounds on a very light neutralino , 2009, 0901.3485.

[76]  A. J. Hughes,et al.  Results from the first science run of the ZEPLIN-III dark matter search experiment , 2008, 0812.1150.

[77]  J. A. Aguilar-Saavedra,et al.  Distinguishing seesaw models at LHC with multi-lepton signals , 2008, 0808.2468.

[78]  S. Antusch,et al.  Non-standard neutrino interactions with matter from physics beyond the Standard Model , 2008, 0807.1003.

[79]  J.C.Romao,et al.  Minimal supergravity sneutrino dark matter and inverse seesaw neutrino masses , 2008, 0806.3225.

[80]  Univ. Jing Gangshan,et al.  First results from DAMA/LIBRA and the combined results with DAMA/NaI , 2008, 0804.2741.

[81]  M. B. Gavela,et al.  Low energy effects of neutrino masses , 2007, 0707.4058.

[82]  A. Pukhov,et al.  micrOMEGAs 2.0.7: a program to calculate the relic density of dark matter in a generic model , 2006, Comput. Phys. Commun..

[83]  U. Haisch,et al.  Estimate of B(B → Xsγ) at O(α2s) , 2007 .

[84]  J. Valle,et al.  Enhanced μ−–e− conversion in nuclei in the inverse seesaw model , 2005, hep-ph/0512360.

[85]  U. Haisch,et al.  Estimate of BR(B -> X_s gamma) at O(alpha_s^2) , 2006, hep-ph/0609232.

[86]  J. Valle,et al.  Enhanced lepton flavor violation in the supersymmetric inverse seesaw model , 2004, hep-ph/0406040.

[87]  G. Bertone,et al.  Particle dark matter: Evidence, candidates and constraints , 2004, hep-ph/0404175.

[88]  S. Heinemeyer,et al.  Two-loop SUSY corrections to the anomalous magnetic moment of the muon , 2003, hep-ph/0312264.

[89]  Werner Porod,et al.  SPheno, a program for calculating supersymmetric spectra, SUSY particle decays and SUSY particle production at e+e− colliders☆ , 2003, hep-ph/0301101.

[90]  D. Hooper,et al.  Supersymmetric dark matter—how light can the LSP be? , 2002, hep-ph/0212226.

[91]  R. Pittau,et al.  ALPGEN, a generator for hard multiparton processes in hadronic collisions , 2002, hep-ph/0206293.

[92]  X. Tata,et al.  Higgs mediated leptonic decays of $B_s$ and $B_d$ mesons as probes of supersymmetry , 2002, hep-ph/0208078.

[93]  J. Huston,et al.  New generation of parton distributions with uncertainties from global QCD analysis , 2002, hep-ph/0201195.

[94]  S. Mrenna,et al.  Pythia 6.3 physics and manual , 2003, hep-ph/0308153.

[95]  C. Sander,et al.  A global fit to the anomalous magnetic moment, b→Xsγ and Higgs limits in the constrained MSSM , 2001, hep-ph/0106311.

[96]  U. Chattopadhyay,et al.  Upper limits on sparticle masses from g -- 2 and the possibility for discovery of supersymmetry at colliders and in dark matter searches. , 2001, Physical review letters.

[97]  J. Huston,et al.  Global QCD analysis of parton structure of the nucleon: CTEQ5 parton distributions , 1999, hep-ph/9903282.

[98]  T. Hebbeker,et al.  Can the sneutrino be the lightest supersymmetric particle , 1999, hep-ph/9910326.

[99]  S. Gaur Dileptonic decay of Bs meson in SUSY models with large tanβ , 1998, hep-ph/9810307.

[100]  S. P. Martin,et al.  Perceptual Content , 1994 .

[101]  M. Drees Particle Dark Matter , 1996, hep-ph/9609300.

[102]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[103]  F. Gabbiani,et al.  A complete analysis of FCNC and CP constraints in general SUSY extensions of the standard model , 1996, hep-ph/9604387.

[104]  R. Arnowitt,et al.  Supersymmetric Dark Matter , 1995, hep-ph/9610460.

[105]  Drees,et al.  Implications for supersymmetric dark matter detection from radiative b decays. , 1994, Physical review. D, Particles and fields.

[106]  K. Olive,et al.  Heavy sneutrinos as dark matter , 1994, hep-ph/9409270.

[107]  R. Arnowitt,et al.  b → sγ decay in supergravity grand unification and dark matter , 1994, hep-ph/9406389.

[108]  A. Pilaftsis,et al.  Flavour-violating charged lepton decays in seesaw-type models , 1994, hep-ph/9403398.

[109]  Hirata,et al.  Mass limits for dark-matter particles derived from high-energy neutrinos from the Sun. , 1991, Physical Review D, Particles and fields.

[110]  G. Ridolfi,et al.  Effects of supergravity-induced electroweak breaking on rare b-decays and mixings , 1991 .

[111]  J. Valle,et al.  Neutrino mass and baryon-number nonconservation in superstring models. , 1986, Physical review. D, Particles and fields.

[112]  R. Mohapatra,et al.  Mechanism for understanding small neutrino mass in superstring theories. , 1986, Physical review letters.

[113]  J. Hagelin,et al.  Perhaps scalar neutrinos are the lightest supersymmetric partners , 1984 .

[114]  L. Ibáñez The scalar neutrinos as the lightest supersymmetric particles and cosmology , 1984 .

[115]  T. Yanagida,et al.  Horizontal Symmetry and Masses of Neutrinos , 1980 .

[116]  S. Glashow,et al.  The Future of Elementary Particle Physics , 1979 .