On weak Dirichlet boundary conditions for elliptic problems in the continuous Galerkin method

Abstract We combine continuous and discontinuous Galerkin methods in the setting of a model diffusion problem. Starting from a hybrid discontinuous formulation, we replace element interiors by more general subsets of the computational domain – groups of elements that support a piecewise-polynomial continuous expansion. This step allows us to identify a new weak formulation of Dirichlet boundary condition in the continuous framework. We show that the boundary condition leads to a stable discretization with a single parameter insensitive to mesh size and polynomial order of the expansion. The robustness of the approach is demonstrated on several numerical examples.

[1]  William Layton,et al.  Weak imposition of “no-slip” conditions in finite element methods , 1999 .

[2]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..

[3]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[4]  Robert Michael Kirby,et al.  Nektar++: An open-source spectral/hp element framework , 2015, Comput. Phys. Commun..

[5]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[6]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[7]  Raytcho D. Lazarov,et al.  Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..

[8]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[9]  John A. Evans,et al.  ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .

[10]  Rolf Stenberg,et al.  On weakly imposed boundary conditions for second order problems , 1995 .

[11]  Victor M. Calo,et al.  Impact of element-level static condensation on iterative solver performance , 2015, Comput. Math. Appl..

[12]  Robert Michael Kirby,et al.  To CG or to HDG: A Comparative Study in 3D , 2016, J. Sci. Comput..

[13]  Atife Caglar,et al.  Weak imposition of boundary conditions for the Navier―Stokes equations by a penalty method , 2009 .

[14]  Mark Ainsworth,et al.  Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations , 1999 .

[15]  Spencer J. Sherwin,et al.  Implicit Large-Eddy Simulation of a Wingtip Vortex , 2016 .

[16]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[17]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[18]  George Em Karniadakis,et al.  De-aliasing on non-uniform grids: algorithms and applications , 2003 .

[19]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[20]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[21]  Jan S. Hesthaven,et al.  Spectral penalty methods , 2000 .

[22]  André Garon,et al.  Weak imposition of the slip boundary condition on curved boundaries for Stokes flow , 2014, J. Comput. Phys..

[23]  Jörg Stiller,et al.  A fast spectral element solver combining static condensation and multigrid techniques , 2013, J. Comput. Phys..

[24]  J. Peiro,et al.  On 2D elliptic discontinuous Galerkin methods , 2006 .

[25]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .