On weak Dirichlet boundary conditions for elliptic problems in the continuous Galerkin method
暂无分享,去创建一个
Robert Michael Kirby | Spencer J. Sherwin | David Moxey | Chris D. Cantwell | Martin Vymazal | S. Sherwin | R. Kirby | C. Cantwell | D. Moxey | M. Vymazal
[1] William Layton,et al. Weak imposition of “no-slip” conditions in finite element methods , 1999 .
[2] Robert Michael Kirby,et al. To CG or to HDG: A Comparative Study , 2012, J. Sci. Comput..
[3] J. Nitsche. Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .
[4] Robert Michael Kirby,et al. Nektar++: An open-source spectral/hp element framework , 2015, Comput. Phys. Commun..
[5] Douglas N. Arnold,et al. Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..
[6] Rolf Stenberg,et al. Nitsche's method for general boundary conditions , 2009, Math. Comput..
[7] Raytcho D. Lazarov,et al. Unified Hybridization of Discontinuous Galerkin, Mixed, and Continuous Galerkin Methods for Second Order Elliptic Problems , 2009, SIAM J. Numer. Anal..
[8] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[9] John A. Evans,et al. ISOGEOMETRIC DIVERGENCE-CONFORMING B-SPLINES FOR THE STEADY NAVIER–STOKES EQUATIONS , 2013 .
[10] Rolf Stenberg,et al. On weakly imposed boundary conditions for second order problems , 1995 .
[11] Victor M. Calo,et al. Impact of element-level static condensation on iterative solver performance , 2015, Comput. Math. Appl..
[12] Robert Michael Kirby,et al. To CG or to HDG: A Comparative Study in 3D , 2016, J. Sci. Comput..
[13] Atife Caglar,et al. Weak imposition of boundary conditions for the Navier―Stokes equations by a penalty method , 2009 .
[14] Mark Ainsworth,et al. Domain decomposition preconditioners for p and hp finite element approximation of Stokes equations , 1999 .
[15] Spencer J. Sherwin,et al. Implicit Large-Eddy Simulation of a Wingtip Vortex , 2016 .
[16] L. R. Scott,et al. The Mathematical Theory of Finite Element Methods , 1994 .
[17] S. Orszag,et al. High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .
[18] George Em Karniadakis,et al. De-aliasing on non-uniform grids: algorithms and applications , 2003 .
[19] Thomas J. R. Hughes,et al. Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .
[20] Victor M. Calo,et al. Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .
[21] Jan S. Hesthaven,et al. Spectral penalty methods , 2000 .
[22] André Garon,et al. Weak imposition of the slip boundary condition on curved boundaries for Stokes flow , 2014, J. Comput. Phys..
[23] Jörg Stiller,et al. A fast spectral element solver combining static condensation and multigrid techniques , 2013, J. Comput. Phys..
[24] J. Peiro,et al. On 2D elliptic discontinuous Galerkin methods , 2006 .
[25] Rémi Abgrall,et al. High‐order CFD methods: current status and perspective , 2013 .