Deformable patch embedding-based shift module-enhanced transformer for panoramic action recognition

[1]  Gunhee Kim,et al.  Panoramic Vision Transformer for Saliency Detection in 360° Videos , 2022, ECCV.

[2]  Ruize Han,et al.  Panoramic Human Activity Recognition , 2022, ECCV.

[3]  R. Stiefelhagen,et al.  Bending Reality: Distortion-aware Transformers for Adapting to Panoramic Semantic Segmentation , 2022, 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  Guosheng Hu,et al.  DPT: Deformable Patch-based Transformer for Visual Recognition , 2021, ACM Multimedia.

[5]  Jakob Uszkoreit,et al.  How to train your ViT? Data, Augmentation, and Regularization in Vision Transformers , 2021, Trans. Mach. Learn. Res..

[6]  Anima Anandkumar,et al.  SegFormer: Simple and Efficient Design for Semantic Segmentation with Transformers , 2021, NeurIPS.

[7]  Ivan Marsic,et al.  VidTr: Video Transformer Without Convolutions , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[8]  Matthieu Cord,et al.  Going deeper with Image Transformers , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[9]  Cordelia Schmid,et al.  ViViT: A Video Vision Transformer , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[10]  Lihi Zelnik-Manor,et al.  An Image is Worth 16x16 Words, What is a Video Worth? , 2021, ArXiv.

[11]  Heng Wang,et al.  Is Space-Time Attention All You Need for Video Understanding? , 2021, ICML.

[12]  Matthieu Cord,et al.  Training data-efficient image transformers & distillation through attention , 2020, ICML.

[13]  Limin Wang,et al.  TDN: Temporal Difference Networks for Efficient Action Recognition , 2020, 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[14]  Klaus Dietmayer,et al.  Point Transformer , 2020, IEEE Access.

[15]  S. Gelly,et al.  An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale , 2020, ICLR.

[16]  Bin Li,et al.  Deformable DETR: Deformable Transformers for End-to-End Object Detection , 2020, ICLR.

[17]  Hugo Latapie,et al.  Egok360: A 360 Egocentric Kinetic Human Activity Video Dataset , 2020, 2020 IEEE International Conference on Image Processing (ICIP).

[18]  Baoxin Li,et al.  Unsupervised Learning of Optical Flow With CNN-Based Non-Local Filtering , 2020, IEEE Transactions on Image Processing.

[19]  Willem Zuidema,et al.  Quantifying Attention Flow in Transformers , 2020, ACL.

[20]  Junnan Li,et al.  Weakly-Supervised Multi-Person Action Recognition in 360° Videos , 2020, 2020 IEEE Winter Conference on Applications of Computer Vision (WACV).

[21]  Jan-Michael Frahm,et al.  Tangent Images for Mitigating Spherical Distortion , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[22]  O. Lanz,et al.  Gate-Shift Networks for Video Action Recognition , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[23]  Matthias Nießner,et al.  Spherical CNNs on Unstructured Grids , 2019, ICLR.

[24]  Baoxin Li,et al.  Action-Stage Emphasized Spatiotemporal VLAD for Video Action Recognition , 2019, IEEE Transactions on Image Processing.

[25]  Jitendra Malik,et al.  SlowFast Networks for Video Recognition , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[26]  Sergio Escalera,et al.  LSTA: Long Short-Term Attention for Egocentric Action Recognition , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[27]  Chuang Gan,et al.  TSM: Temporal Shift Module for Efficient Video Understanding , 2018, 2019 IEEE/CVF International Conference on Computer Vision (ICCV).

[28]  Kuk-jin Yoon,et al.  SpherePHD: Applying CNNs on a Spherical PolyHeDron Representation of 360° Images , 2018, 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[29]  Bolei Zhou,et al.  Temporal Relational Reasoning in Videos , 2017, ECCV.

[30]  Rafael Monroy,et al.  SalNet360: Saliency Maps for omni-directional images with CNN , 2017, Signal Process. Image Commun..

[31]  Lukasz Kaiser,et al.  Attention is All you Need , 2017, NIPS.

[32]  Andrew Zisserman,et al.  Quo Vadis, Action Recognition? A New Model and the Kinetics Dataset , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[33]  Limin Wang,et al.  Temporal Segment Networks for Action Recognition in Videos , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Yi Li,et al.  Deformable Convolutional Networks , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[35]  Andrew Zisserman,et al.  Two-Stream Convolutional Networks for Action Recognition in Videos , 2014, NIPS.

[36]  Thomas Brox,et al.  High Accuracy Optical Flow Estimation Based on a Theory for Warping , 2004, ECCV.

[37]  Jürgen Schmidhuber,et al.  Learning to Forget: Continual Prediction with LSTM , 2000, Neural Computation.

[38]  Zehdreh Allen-Lafayette,et al.  Flattening the Earth, Two Thousand Years of Map Projections , 1998 .

[39]  Han Zhang,et al.  Visual Indoor Navigation Using Mobile Augmented Reality , 2022, CGI.

[40]  Connelly Barnes,et al.  Deep 360° Optical Flow Estimation Based on Multi-Projection Fusion , 2022, ArXiv.

[41]  Wuzhen Shi,et al.  Partially Occluded Skeleton Action Recognition Based on Multi-stream Fusion Graph Convolutional Networks , 2021, CGI.

[42]  Stephen Lin,et al.  Swin Transformer: Hierarchical Vision Transformer using Shifted Windows , 2021, 2021 IEEE/CVF International Conference on Computer Vision (ICCV).

[43]  Zhaoxin Li,et al.  Monocular Dense SLAM with Consistent Deep Depth Prediction , 2021, CGI.