Multi-fidelity bayesian optimization using model-order reduction for viscoplastic structures
暂无分享,去创建一个
Christian Rey | David Néron | Pierre-Alain Boucard | Stéphane Nachar | D. Néron | C. Rey | P. Boucard | S. Nachar | Stéphane Nachar
[1] Pierre Ladevèze,et al. A door to model reduction in high-dimensional parameter space , 2018, Comptes Rendus Mécanique.
[2] F. Chinesta,et al. A Short Review in Model Order Reduction Based on Proper Generalized Decomposition , 2018 .
[3] Pierre Ladevèze,et al. A 3D shock computational strategy for real assembly and shock attenuator , 2002 .
[4] David Néron,et al. A model reduction technique based on the PGD for elastic-viscoplastic computational analysis , 2013 .
[5] Kevin Leyton-Brown,et al. Sequential Model-Based Optimization for General Algorithm Configuration , 2011, LION.
[6] H. Zou,et al. Regularization and variable selection via the elastic net , 2005 .
[7] A. Nouy. A priori model reduction through Proper Generalized Decomposition for solving time-dependent partial differential equations , 2010 .
[8] A. Nouy. A generalized spectral decomposition technique to solve a class of linear stochastic partial differential equations , 2007 .
[9] Pierre Ladevèze,et al. The Reference Point Method, a ``hyperreduction'' technique: Application to PGD-based nonlinear model reduction , 2017 .
[10] Jonas Mockus,et al. On Bayesian Methods for Seeking the Extremum , 1974, Optimization Techniques.
[11] Christopher K. I. Williams. Prediction with Gaussian Processes: From Linear Regression to Linear Prediction and Beyond , 1999, Learning in Graphical Models.
[12] M. Bendsøe,et al. Topology optimization of continuum structures with local stress constraints , 1998 .
[13] M. Bhattacharyya,et al. A multi-temporal scale model reduction approach for the computation of fatigue damage , 2018, Computer Methods in Applied Mechanics and Engineering.
[14] A. O'Hagan,et al. Predicting the output from a complex computer code when fast approximations are available , 2000 .
[15] D. Ginsbourger,et al. A benchmark of kriging-based infill criteria for noisy optimization , 2013, Structural and Multidisciplinary Optimization.
[16] Adrien Leygue,et al. The Proper Generalized Decomposition for Advanced Numerical Simulations: A Primer , 2013 .
[17] Donald R. Jones,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998, J. Glob. Optim..
[18] David Néron,et al. Integration of PGD-virtual charts into an engineering design process , 2016 .
[19] Miss A.O. Penney. (b) , 1974, The New Yale Book of Quotations.
[20] O. Allix,et al. Interlaminar interface modelling for the prediction of delamination , 1992 .
[21] G. Matheron. Principles of geostatistics , 1963 .
[22] T. Hughes,et al. Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .
[23] P. Duysinx,et al. Analytical sensitivity analysis using the extended finite element method in shape optimization of bimaterial structures , 2016 .
[24] J. Chaboche,et al. Mechanics of Solid Materials , 1990 .
[25] C. Allery,et al. Proper general decomposition (PGD) for the resolution of Navier-Stokes equations , 2011, J. Comput. Phys..
[26] David Dureisseix,et al. A multi-time-scale strategy for multiphysics problems: Application to poroelasticity , 2003 .
[27] David Néron,et al. Multiparametric analysis within the proper generalized decomposition framework , 2012 .
[28] Zhong-Hua Han,et al. A New Cokriging Method for Variable-Fidelity Surrogate Modeling of Aerodynamic Data , 2010 .
[29] G. I. Marchuk. Optimization Techniques IFIP Technical Conference , 1975 .
[30] Stefan Görtz,et al. Alternative Cokriging Method for Variable-Fidelity Surrogate Modeling , 2012 .
[31] Antonio Huerta Cerezuela. Proper Generalized Decomposition based dynamic data-driven control of thermal processes , 2012 .
[32] Adrien Leygue,et al. Proper Generalized Decomposition based dynamic data-driven control of thermal processes ☆ , 2012 .
[33] Matthias De Lozzo. Substitution de modèle et approche multifidélité en expérimentation numérique , 2015 .
[34] Roberto Battiti,et al. Learning and Intelligent Optimization , 2017, Lecture Notes in Computer Science.
[35] Andy J. Keane,et al. Multi-fidelity Kriging-assisted structural optimization of whole engine models employing medial meshes , 2019, Structural and Multidisciplinary Optimization.
[36] R JonesDonald,et al. Efficient Global Optimization of Expensive Black-Box Functions , 1998 .
[37] Jean-Antoine Désidéri,et al. Multifidelity surrogate modeling based on radial basis functions , 2017 .
[38] Richard J. Beckman,et al. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output From a Computer Code , 2000, Technometrics.
[39] David Dureisseix,et al. A computational strategy for poroelastic problems with a time interface between coupled physics , 2008 .
[40] Andy J. Keane,et al. Optimization using surrogate models and partially converged computational fluid dynamics simulations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[41] Pierre-Alain Boucard,et al. Approche multirésolution pour l'étude paramétrique d'assemblages par contact et frottement , 2003 .
[42] L. Champaney,et al. Large scale applications on parallel computers of a mixed domain decomposition method , 1997 .
[43] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[44] Seongim Choi,et al. Two-Level Multi-Fidelity Design Optimization Studies for Supersonic Jets , 2005 .
[45] David Néron,et al. Virtual charts of solutions for parametrized nonlinear equations , 2014 .
[46] Francisco Chinesta,et al. Efficient mold cooling optimization by using model reduction , 2011 .
[47] D G Krige,et al. A statistical approach to some mine valuation and allied problems on the Witwatersrand , 2015 .
[48] Ralf Zimmermann,et al. Simplified Cross-Correlation Estimation For Multi-Fidelity Surrogate Cokriging Models , 2010 .
[49] Kirthevasan Kandasamy,et al. Multi-fidelity Gaussian Process Bandit Optimisation , 2016, J. Artif. Intell. Res..
[50] Donald R. Jones,et al. A Taxonomy of Global Optimization Methods Based on Response Surfaces , 2001, J. Glob. Optim..
[51] P. Ladevèze,et al. A multiscale computational approach for contact problems , 2002 .
[52] Jean-Charles Passieux,et al. High resolution digital image correlation using proper generalized decomposition: PGD‐DIC , 2012 .
[53] P. Ladevèze. Nonlinear Computational Structural Mechanics: New Approaches and Non-Incremental Methods of Calculation , 1998 .
[54] Ludovic Chamoin,et al. Non-invasive implementation of nonlinear isogeometric analysis in an industrial FE software , 2019, Engineering Computations.
[55] Maxime Blanchard. Méthode global/local non-intrusive pour les simulations cycliques non-linéaires , 2018 .
[56] Loic Le Gratiet,et al. Bayesian Analysis of Hierarchical Multifidelity Codes , 2011, SIAM/ASA J. Uncertain. Quantification.
[57] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[58] David Néron,et al. A rational strategy for the resolution of parametrized problems in the PGD framework , 2013 .
[59] P. Villon,et al. Multi-fidelity POD surrogate-assisted optimization: Concept and aero-design study , 2017 .
[60] David Néron,et al. Time‐space PGD for the rapid solution of 3D nonlinear parametrized problems in the many‐query context , 2015 .
[61] Alexander I. J. Forrester,et al. Multi-fidelity optimization via surrogate modelling , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[62] Stefan Görtz,et al. Hierarchical Kriging Model for Variable-Fidelity Surrogate Modeling , 2012 .
[63] Qatu,et al. Shape Optimization by the Homogenization Method. Applied Mathematical Sciences, Vol 146 , 2003 .
[64] G. Allaire,et al. Shape optimization by the homogenization method , 1997 .
[65] P. Ladevèze,et al. Sur une famille d'algorithmes en mécanique des structures , 1985 .
[66] Pierre Ladevèze,et al. A multiple solution method for non-linear structural mechanics , 1998 .
[67] Pierre-Alain Boucard,et al. Variable-fidelity modeling of structural analysis of assemblies , 2016, J. Glob. Optim..
[68] David Néron,et al. Coupling multi-fidelity kriging and model-order reduction for the construction of virtual charts , 2019, Computational Mechanics.