5,20-Di(pyridin-2-yl)-[28]hexaphyrin(1.1.1.1.1.1): A Stable Hückel Antiaromatic Hexaphyrin Stabilized by Intramolecular Hydrogen Bonding and Protonation-Induced Conformational Twist To Gain Möbius Aromaticity.

5,20-Di(pyridin-2-yl)-[28]hexaphyrin(1.1.1.1.1.1) 7 was prepared and characterized as a stable Hückel antiaromatic molecule with a dumbbell-like structure stabilized by effective intramolecular hydrogen bonding interactions involving the 2-pyridyl nitrogen atoms. Pd(II) metalation of 7 afforded two bis-Pd(II) complexes, 9-syn and 9-anti, whose structures are rigidly held by Pd(II) coordination, rendering 9-syn to be nonaromatic because of its highly distorted structure and 9-anti to be Hückel antiaromatic because of its enforced planar dumbbell structure. In contrast, protonation of 7 with methanesulfonic acid (MSA) led to the formation of its triprotonated species 7H(3), which has been shown to take on twisted conformations with Möbius aromaticity in CH(2)Cl(2), while the structure was held to be a planar rectangular conformation in the crystal. Excited-state dynamics were measured for 7, 7H(3), 9-syn, and 9-anti, which indicated their electronic nature to be antiaromatic, aromatic, nonaromatic, and antiaromatic, respectively.

[1]  Miłosz Pawlicki,et al.  Aromaticity Switching in Porphyrinoids. , 2015, Chemistry, an Asian journal.

[2]  Dongho Kim,et al.  Stable π Radical from a Contracted Doubly N-Confused Hexaphyrin by Double Palladium Metalation. , 2015, Angewandte Chemie.

[3]  Tullimilli Y. Gopalakrishna,et al.  An amphoteric switch to aromatic and antiaromatic states of a neutral air-stable 25π radical. , 2014, Angewandte Chemie.

[4]  Jong Min Lim,et al.  Diprotonated [28]hexaphyrins(1.1.1.1.1.1): triangular antiaromatic macrocycles. , 2014, Angewandte Chemie.

[5]  Byung Sun Lee,et al.  Antiaromatic hexaphyrins and octaphyrins stabilized by the hydrogen-bonding interactions of meso-imidazolyl groups. , 2012, Angewandte Chemie.

[6]  A. Osuka,et al.  Expanded porphyrins: intriguing structures, electronic properties, and reactivities. , 2011, Angewandte Chemie.

[7]  M. Stępień,et al.  Figure eights, Möbius bands, and more: conformation and aromaticity of porphyrinoids. , 2011, Angewandte Chemie.

[8]  Jong Min Lim,et al.  Aromaticity and photophysical properties of various topology-controlled expanded porphyrins. , 2010, Chemical Society reviews.

[9]  Jong Min Lim,et al.  Möbius antiaromatic bisphosphorus complexes of [30]hexaphyrins. , 2010, Angewandte Chemie.

[10]  A. Osuka,et al.  A stable non-Kekulé singlet biradicaloid from meso-free 5,10,20,25-tetrakis(pentafluorophenyl)-substituted [26]hexaphyrin(1.1.1.1.1.1). , 2010, Journal of the American Chemical Society.

[11]  M. Stępień,et al.  Three-level topology switching in a molecular Möbius band. , 2010, Journal of the American Chemical Society.

[12]  Jong Min Lim,et al.  Unambiguous identification of Möbius aromaticity for meso-aryl-substituted [28]hexaphyrins(1.1.1.1.1.1). , 2008, Journal of the American Chemical Society.

[13]  Z. Ciunik,et al.  Palladium vacataporphyrin reveals conformational rearrangements involving Hückel and Möbius macrocyclic topologies. , 2008, Journal of the American Chemical Society.

[14]  Jong Kang Park,et al.  Metalation of expanded porphyrins: a chemical trigger used to produce molecular twisting and Möbius aromaticity. , 2008, Angewandte Chemie.

[15]  M. Stępień,et al.  Expanded porphyrin with a split personality: a Hückel-Möbius aromaticity switch. , 2007, Angewandte Chemie.

[16]  J. Sessler,et al.  Transition-metal complexes of expanded porphyrins. , 2007, Accounts of chemical research.

[17]  S. Mandal,et al.  Cyclic oligofurans: one-pot synthesis of 30pi and 40pi expanded porphyrinoids. , 2006, Organic letters.

[18]  Clémence Corminboeuf,et al.  Nucleus-independent chemical shifts (NICS) as an aromaticity criterion. , 2005, Chemical reviews.

[19]  J. Sessler,et al.  Synthetic expanded porphyrin chemistry. , 2003, Angewandte Chemie.

[20]  T. K. Chandrashekar,et al.  Core-modified expanded porphyrins: new generation organic materials. , 2003, Accounts of chemical research.

[21]  V. Lynch,et al.  Formation and properties of cyclo[6]pyrrole and cyclo[7]pyrrole. , 2003, Journal of the American Chemical Society.

[22]  V. Lynch,et al.  Cyclo[8]pyrrole: A Simple-to-Make Expanded Porphyrin with No Meso Bridges , 2002 .

[23]  J. Sessler,et al.  Sapphyrins: versatile anion binding agents. , 2001, Accounts of chemical research.

[24]  A. Osuka,et al.  meso-aryl-substituted expanded porphyrins. , 2001, Journal of the American Chemical Society.

[25]  Lash Giant Porphyrinoids: From Figure Eights to Nanomolecular Cavities. , 2000, Angewandte Chemie.

[26]  V. Lynch,et al.  Chiral Recognition of Dicarboxylate Anions by Sapphyrin-Based Receptors , 1997 .

[27]  David Dolphin,et al.  Expanded Porphyrins and Their Heterologs. , 1997, Chemical reviews.

[28]  Paul von Ragué Schleyer,et al.  Nucleus-Independent Chemical Shifts:  A Simple and Efficient Aromaticity Probe. , 1996, Journal of the American Chemical Society.

[29]  Tadeusz Marek Krygowski,et al.  Crystallographic studies of inter- and intramolecular interactions reflected in aromatic character of .pi.-electron systems , 1993, J. Chem. Inf. Comput. Sci..

[30]  V. Lynch,et al.  A Nonaromatic Expanded Porphyrin Derived from Anthracene—A Macrocycle which Unexpectedly Binds Anions , 1992 .