A decomposition theorem for the fuzzy Henstock integral

We study the fuzzy Henstock and the fuzzy McShane integrals for fuzzy-number valued functions. The main purpose of this paper is to establish the following decomposition theorem: a fuzzy-number valued function is fuzzy Henstock integrable if and only if it can be represented as a sum of a fuzzy McShane integrable fuzzy-number valued function and of a fuzzy Henstock integrable fuzzy number valued function generated by a Henstock integrable function.

[1]  Kazimierz Musiaø Pettis Integrability of Multifunctions with Values in Arbitrary Banach Spaces , 2011 .

[2]  Russell A. Gordon The Integrals of Lebesgue, Denjoy, Perron, and Henstock , 1994 .

[3]  L. Piazza,et al.  Set-Valued Kurzweil–Henstock–Pettis Integral , 2005 .

[4]  G. Bliss,et al.  Integrals of Lebesgue , 1917 .

[5]  Ralph Henstock,et al.  Theory of integration , 1966 .

[6]  J. Neveu Bases mathématiques du calcul des probabilités , 1966 .

[7]  Š. Schwabik,et al.  Topics In Banach Space Integration , 2005 .

[8]  Osmo Kaleva Fuzzy differential equations , 1987 .

[9]  Congxin Wu,et al.  On Henstock integral of fuzzy-number-valued functions (I) , 2001, Fuzzy Sets Syst..

[10]  C. Zălinescu,et al.  Scalar convergence of convex sets , 1992 .

[11]  A Decomposition Theorem for Compact-Valued Henstock Integral , 2006 .

[12]  J. Kurzweil Generalized ordinary differential equations and continuous dependence on a parameter , 1957 .

[13]  D. Fremlin The Henstock and McShane integrals of vector-valued functions , 1994 .

[14]  Yabin Shao,et al.  Fuzzy Integral Equations and Strong Fuzzy Henstock Integrals , 2014 .

[15]  Congxin Wu,et al.  On Henstock integrals of interval-valued functions and fuzzy-valued functions , 2000, Fuzzy Sets Syst..

[16]  A Decomposition of Henstock-Kurzweil-Pettis Integrable Multifunctions , 2009 .

[17]  Shouchuan Hu,et al.  Handbook of multivalued analysis , 1997 .

[18]  Gregory T. Adams,et al.  The fuzzy integral , 1980 .

[19]  C. Hess,et al.  On the Pettis Integral of Closed Valued Multifunctions , 2000 .

[20]  Peter E. Kloeden,et al.  Characterization of compact subsets of fuzzy sets , 1989 .