Flexible and transparent graphene films as acoustic actuator electrodes using inkjet printing.

Flexible and transparent graphene films have been fabricated via inkjet printing and vapor deposition (VDP) methods, and the graphene-based acoustic actuator could be used as an extremely thin and lightweight loudspeaker.

[1]  Chongwu Zhou,et al.  The race to replace tin-doped indium oxide: which material will win? , 2010, ACS nano.

[2]  Rajesh Rajamani,et al.  Acoustic transmission control using active panels: an experimental study of its limitations and possibilities , 2007 .

[3]  P. Cebe,et al.  High-temperature dielectric relaxation in α- and γ-phase poly(vinylidene fluoride) , 1984 .

[4]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[5]  Hisato Yamaguchi,et al.  Highly uniform 300 mm wafer-scale deposition of single and multilayered chemically derived graphene thin films. , 2010, ACS nano.

[6]  N. Inagaki,et al.  A new approach for selective surface modification of fluoropolymers by remote plasmas , 2004 .

[7]  Rajesh Rajamani,et al.  Active control of glass panels for reduction of sound transmission through windows , 2004 .

[8]  Xufeng Zhou,et al.  A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. , 2010, Chemical communications.

[9]  Heydt,et al.  Acoustical performance of an electrostrictive polymer film loudspeaker , 2000, The Journal of the Acoustical Society of America.

[10]  R. V. Salvatierra,et al.  Transparent and conductive thin films of graphene/polyaniline nanocomposites prepared through interfacial polymerization. , 2011, Chemical communications.

[11]  J. Jang,et al.  Facile fabrication of inorganic-polymer core-shell nanostructures by a one-step vapor deposition polymerization. , 2003, Angewandte Chemie.

[12]  K. Müllen,et al.  Transparent, conductive graphene electrodes for dye-sensitized solar cells. , 2008, Nano letters.

[13]  J. Jang,et al.  Micropatterning of Graphene Sheets by Inkjet Printing and Its Wideband Dipole‐Antenna Application , 2011, Advanced materials.

[14]  H. Kawai,et al.  The Piezoelectricity of Poly (vinylidene Fluoride) , 1969 .

[15]  M. Mozetič,et al.  XPS study of oxygen plasma activated PET , 2007 .

[16]  C. Tung,et al.  Anisotropic oxygen plasma etching of colloidal particles in electrospun fibers. , 2011, Chemical communications.

[17]  J. Jang,et al.  Fabrication of Water‐Dispersible Polyaniline‐Poly(4‐styrenesulfonate) Nanoparticles For Inkjet‐Printed Chemical‐Sensor Applications , 2007 .

[18]  J. Jang,et al.  A simple synthesis of mesoporous carbons with tunable mesopores using a colloidal template-mediated vapor deposition polymerization. , 2005, Chemical communications.

[19]  Byung-Seon Kong,et al.  Layer-by-layer assembly of graphene and gold nanoparticles by vacuum filtration and spontaneous reduction of gold ions. , 2009, Chemical communications.

[20]  F. Tuinstra,et al.  Raman Spectrum of Graphite , 1970 .

[21]  G. Jabbour,et al.  Inkjet Printing—Process and Its Applications , 2010, Advanced materials.

[22]  H. Sirringhaus,et al.  High-Resolution Ink-Jet Printing of All-Polymer Transistor Circuits , 2000, Science.

[23]  Chad A Mirkin,et al.  Direct-write dip-pen nanolithography of proteins on modified silicon oxide surfaces. , 2003, Angewandte Chemie.

[24]  Ghassan E. Jabbour,et al.  Simple Modification of Sheet Resistivity of Conducting Polymeric Anodes via Combinatorial Ink‐Jet Printing Techniques , 2005 .

[25]  J. Jang,et al.  Micropatterning of conducting polymer tracks on plasma treated flexible substrate using vapor phase polymerization-mediated inkjet printing , 2010 .

[26]  M. Bradley,et al.  Inkjet fabrication of polymer microarrays and grids--solving the evaporation problem. , 2009, Chemical communications.

[27]  I. Baek,et al.  Polymer-ionic liquid gels for enhanced gas transport. , 2009, Chemical communications.

[28]  H. Dai,et al.  Highly conducting graphene sheets and Langmuir-Blodgett films. , 2008, Nature nanotechnology.