Distinct Tonic and Phasic Anticipatory Activity in Lateral Habenula and Dopamine Neurons

[1]  MacDougall Jm,et al.  Anatomical organization of septal projections in maintenance of DRL behavior in rats. , 1969 .

[2]  Anatomical organization of septal projections in maintenance of DRL behavior in rats. , 1969, Journal of comparative and physiological psychology.

[3]  J. Harsh,et al.  Choosing between predictable and unpredictable shock conditions: Data and theory. , 1979 .

[4]  E. Thornton,et al.  The effects of lesions of the habenula nucleus on lever press behaviour during a tandem operant schedule with contrasting response requirements , 1984, Behavioural Brain Research.

[5]  K. Wilcox,et al.  Stimulation of the lateral habenula inhibits dopamine-containing neurons in the substantia nigra and ventral tegmental area of the rat , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[6]  Suzanne M. Miller Monitoring and blunting: Validation of a questionnaire to assess styles of information seeking under threat. , 1987 .

[7]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to active touch during self-initiated arm movements. , 1990, Journal of neurophysiology.

[8]  Intra-habenular injection of 6-hydroxydopamine produces impaired acquisition of DRL operant behavior. , 1990, Behavioral and neural biology.

[9]  W. Schultz,et al.  Dopamine neurons of the monkey midbrain: contingencies of responses to stimuli eliciting immediate behavioral reactions. , 1990, Journal of neurophysiology.

[10]  A. Grace Phasic versus tonic dopamine release and the modulation of dopamine system responsivity: A hypothesis for the etiology of schizophrenia , 1991, Neuroscience.

[11]  W. Schultz,et al.  Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli , 1996, Nature.

[12]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[13]  P. Holland,et al.  The Role of an Amygdalo-Nigrostriatal Pathway in Associative Learning , 1997, The Journal of Neuroscience.

[14]  J. Hollerman,et al.  Dopamine neurons report an error in the temporal prediction of reward during learning , 1998, Nature Neuroscience.

[15]  K. Berridge,et al.  What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? , 1998, Brain Research Reviews.

[16]  P. Redgrave,et al.  Is the short-latency dopamine response too short to signal reward error? , 1999, Trends in Neurosciences.

[17]  J. Horvitz Mesolimbocortical and nigrostriatal dopamine responses to salient non-reward events , 2000, Neuroscience.

[18]  W. Schultz,et al.  Dopamine responses comply with basic assumptions of formal learning theory , 2001, Nature.

[19]  G. Glover,et al.  Dissociated neural representations of intensity and valence in human olfaction , 2003, Nature Neuroscience.

[20]  M. Mesulam,et al.  Dissociation of Neural Representation of Intensity and Affective Valuation in Human Gustation , 2003, Neuron.

[21]  W. Schultz,et al.  Discrete Coding of Reward Probability and Uncertainty by Dopamine Neurons , 2003, Science.

[22]  Tatsuo K Sato,et al.  Correlated Coding of Motivation and Outcome of Decision by Dopamine Neurons , 2003, The Journal of Neuroscience.

[23]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[24]  O. Hikosaka,et al.  Dopamine Neurons Can Represent Context-Dependent Prediction Error , 2004, Neuron.

[25]  O. Hikosaka,et al.  A possible role of midbrain dopamine neurons in short- and long-term adaptation of saccades to position-reward mapping. , 2004, Journal of neurophysiology.

[26]  E. Vaadia,et al.  Coincident but Distinct Messages of Midbrain Dopamine and Striatal Tonically Active Neurons , 2004, Neuron.

[27]  D. Ballard,et al.  Eye movements in natural behavior , 2005, Trends in Cognitive Sciences.

[28]  Catalin V. Buhusi,et al.  What makes us tick? Functional and neural mechanisms of interval timing , 2005, Nature Reviews Neuroscience.

[29]  P. Dayan,et al.  Dopamine, uncertainty and TD learning , 2005, Behavioral and Brain Functions.

[30]  P. Lang,et al.  Emotion, motivation, and the brain: reflex foundations in animal and human research. , 2006, Progress in brain research.

[31]  P. Redgrave,et al.  The short-latency dopamine signal: a role in discovering novel actions? , 2006, Nature Reviews Neuroscience.

[32]  J. Salamone,et al.  Effort-related functions of nucleus accumbens dopamine and associated forebrain circuits , 2007, Psychopharmacology.

[33]  P. Dayan,et al.  Tonic dopamine: opportunity costs and the control of response vigor , 2007, Psychopharmacology.

[34]  G. Crombez,et al.  The role of extinction and reinstatement in attentional bias to threat: a conditioning approach. , 2006, Behaviour Research and Therapy.

[35]  A. Grace,et al.  The Yin and Yang of dopamine release: a new perspective , 2007, Neuropharmacology.

[36]  P. Shepard,et al.  Lateral Habenula Stimulation Inhibits Rat Midbrain Dopamine Neurons through a GABAA Receptor-Mediated Mechanism , 2007, The Journal of Neuroscience.

[37]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[38]  P. Kelly,et al.  A conductor hidden in the orchestra? Role of the habenular complex in monoamine transmission and cognition , 2007, Neuroscience & Biobehavioral Reviews.

[39]  W. Schultz Multiple dopamine functions at different time courses. , 2007, Annual review of neuroscience.

[40]  R. Wightman,et al.  Associative learning mediates dynamic shifts in dopamine signaling in the nucleus accumbens , 2007, Nature Neuroscience.

[41]  S. Kapur,et al.  Separate brain regions code for salience vs. valence during reward prediction in humans , 2007, Human brain mapping.

[42]  W. Newsome,et al.  The temporal precision of reward prediction in dopamine neurons , 2008, Nature Neuroscience.

[43]  Simon Hong,et al.  The Globus Pallidus Sends Reward-Related Signals to the Lateral Habenula , 2008, Neuron.

[44]  E. Vaadia,et al.  Midbrain Dopaminergic Neurons and Striatal Cholinergic Interneurons Encode the Difference between Reward and Aversive Events at Different Epochs of Probabilistic Classical Conditioning Trials , 2008, The Journal of Neuroscience.

[45]  R. Wightman,et al.  Real-time chemical responses in the nucleus accumbens differentiate rewarding and aversive stimuli , 2008, Nature Neuroscience.

[46]  M. Nicolelis,et al.  Neuronal Ensemble Bursting in the Basal Forebrain Encodes Salience Irrespective of Valence , 2008, Neuron.

[47]  O. Hikosaka,et al.  Representation of negative motivational value in the primate lateral habenula , 2009, Nature Neuroscience.

[48]  H. Bergman,et al.  The dynamics of dopamine in control of motor behavior , 2009, Current Opinion in Neurobiology.

[49]  C. Gallistel,et al.  Risk assessment in man and mouse , 2009, Proceedings of the National Academy of Sciences.

[50]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[51]  Ethan S. Bromberg-Martin,et al.  Midbrain Dopamine Neurons Signal Preference for Advance Information about Upcoming Rewards , 2009, Neuron.

[52]  Christopher J. Peck,et al.  Reward Modulates Attention Independently of Action Value in Posterior Parietal Cortex , 2009, The Journal of Neuroscience.

[53]  M. Frank,et al.  Prefrontal and striatal dopaminergic genes predict individual differences in exploration and exploitation. , 2009, Nature neuroscience.

[54]  A. Cooper,et al.  Predictive Reward Signal of Dopamine Neurons , 2011 .

[55]  A. Rangel,et al.  Dissociating valuation and saliency signals during decision-making. , 2011, Cerebral cortex.