First Scattered-Light Images of the Gas-Rich Debris Disk Around 49 Ceti

We present the first scattered-light images of the debris disk around 49 Ceti, a ~40 Myr A1 main-sequence star at 59 pc, famous for hosting two massive dust belts as well as large quantities of atomic and molecular gas. The outer disk is revealed in reprocessed archival Hubble Space Telescope NICMOS-F110W images, as well as new coronagraphic H-band images from the Very Large Telescope SPHERE instrument. The disk extends from 1”.1 (65 au) to 4”.6 (250 au) and is seen at an inclination of 73°, which refines previous measurements at lower angular resolution. We also report no companion detection larger than 3 M_(Jup) at projected separations beyond 20 au from the star (0”.34). Comparison between the F110W and H-band images is consistent with a gray color of 49 Ceti's dust, indicating grains larger than ≳2 μm. Our photometric measurements indicate a scattering efficiency/infrared excess ratio of 0.2–0.4, relatively low compared to other characterized debris disks. We find that 49 Ceti presents morphological and scattering properties very similar to the gas-rich HD 131835 system. From our constraint on the disk inclination we find that the atomic gas previously detected in absorption must extend to the inner disk, and that the latter must be depleted of CO gas. Building on previous studies, we propose a schematic view of the system describing the dust and gas structure around 49 Ceti and hypothetical scenarios for the gas nature and origin.

[1]  I. Kamp,et al.  A Resolved Molecular Gas Disk around the Nearby A Star 49 Ceti , 2008, 0803.3481.

[2]  M. Wyatt,et al.  Do two-temperature debris discs have multiple belts? , 2014, 1408.4116.

[3]  B. Macintosh,et al.  Angular Differential Imaging: A Powerful High-Contrast Imaging Technique , 2005, astro-ph/0512335.

[4]  K. Flaherty,et al.  DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION RESOLVED BY ALMA , 2016, 1606.07068.

[5]  J. Augereau,et al.  Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations , 2016, 1609.06718.

[6]  A. Roberge,et al.  Exocometary gas in the HD 181327 debris ring , 2016, 1605.05331.

[7]  Mark J. Pecaut,et al.  A REVISED AGE FOR UPPER SCORPIUS AND THE STAR FORMATION HISTORY AMONG THE F-TYPE MEMBERS OF THE SCORPIUS–CENTAURUS OB ASSOCIATION , 2011, 1112.1695.

[8]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[9]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[10]  R. Carswell,et al.  A self-consistent model for the evolution of the gas produced in the debris disc of β Pictoris , 2016, 1606.01247.

[11]  D. Apai,et al.  MOLECULAR GAS IN YOUNG DEBRIS DISKS , 2011, 1109.2299.

[12]  T. Henning,et al.  DISCOVERY OF MOLECULAR GAS AROUND HD 131835 IN AN APEX MOLECULAR LINE SURVEY OF BRIGHT DEBRIS DISKS , 2015, 1510.03766.

[13]  M. Wyatt,et al.  Evolution of Debris Disks , 2008 .

[14]  Jonathan P. Williams,et al.  Protoplanetary Disks and Their Evolution , 2011, 1103.0556.

[15]  Laird M. Close,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE COMPANION DETECTION PIPELINE , 2013, 1310.4172.

[16]  D. Mawet,et al.  Impact of angular differential imaging on circumstellar disk images , 2012, 1207.5909.

[17]  Marc J. Kuchner,et al.  THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS , 2014 .

[18]  P. Thebault Vertical structure of debris discs , 2009, 0906.5524.

[19]  Armando Riccardi,et al.  THE GRAY NEEDLE: LARGE GRAINS IN THE HD 15115 DEBRIS DISK FROM LBT/PISCES/Ks AND LBTI/LMIRcam/L′ ADAPTIVE OPTICS IMAGING , 2012, 1203.2619.

[20]  Inseok Song,et al.  A 40 Myr OLD GASEOUS CIRCUMSTELLAR DISK AT 49 CETI: MASSIVE CO-RICH COMET CLOUDS AT YOUNG A-TYPE STARS , 2012, 1207.1747.

[21]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[22]  M. Malkan,et al.  A Protocometary Cloud around HR 4796A? , 1998 .

[23]  J. Augereau,et al.  HERSCHEL OBSERVATIONS OF GAS AND DUST IN THE UNUSUAL 49 Ceti DEBRIS DISK , 2013, 1305.2894.

[24]  L. C. Henyey,et al.  Diffuse radiation in the Galaxy , 1940 .

[25]  V. De Caprio,et al.  SPHERE IFS: the spectro differential imager of the VLT for exoplanets search , 2008, Astronomical Telescopes + Instrumentation.

[26]  Jeffrey L. Linsky,et al.  The Structure of the Local Interstellar Medium , 2008 .

[27]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[28]  I. Kamp,et al.  VOLATILE-RICH CIRCUMSTELLAR GAS IN THE UNUSUAL 49 CETI DEBRIS DISK , 2014, 1410.6542.

[29]  Kjetil Dohlen,et al.  Prototyping of differential optics for the SPHERE IRDIS dual imaging planet finder camera , 2008, Astronomical Telescopes + Instrumentation.

[30]  Mamadou N'Diaye,et al.  FIRST IMAGES OF DEBRIS DISKS AROUND TWA 7, TWA 25, HD 35650, AND HD 377 , 2015, 1512.02220.

[31]  S. Mark Ammons,et al.  FIRST SCATTERED-LIGHT IMAGE OF THE DEBRIS DISK AROUND HD 131835 WITH THE GEMINI PLANET IMAGER , 2015, 1511.06767.

[32]  D. Mawet,et al.  The SHARDDS survey: First resolved image of the HD 114082 debris disk in the Lower Centaurus Crux with SPHERE , 2016, 1611.05866.

[33]  T. Forveille,et al.  Inhibition of giant-planet formation by rapid gas depletion around young stars , 1995, Nature.

[34]  J. Augereau,et al.  An icy Kuiper-Belt around the young solar-type star HD 181327 , 2011, 1112.3398.

[35]  Barry Y. Welsh,et al.  Detection of Variable Gaseous Absorption Features in the Debris Disks Around Young A-type Stars , 2012 .

[36]  C. Fabron,et al.  SPHERE: a planet finder instrument for the VLT , 2006, Astronomical Telescopes + Instrumentation.

[37]  K. Sadakane,et al.  TWELVE ADDITIONAL "VEGA-LIKE" STARS. , 1986 .

[38]  D. Apai,et al.  Stirring in massive, young debris discs from spatially resolved Herschel images , 2014, 1411.5829.

[39]  High-resolution imaging of the dust disk around 49 Ceti , 2007, astro-ph/0701352.

[40]  Mamadou N'Diaye,et al.  FIVE DEBRIS DISKS NEWLY REVEALED IN SCATTERED LIGHT FROM THE HUBBLE SPACE TELESCOPE NICMOS ARCHIVE , 2014, 1404.5614.

[41]  B. Welsh,et al.  UV SPECTROSCOPY OF STAR-GRAZING COMETS WITHIN THE 49 CETI DEBRIS DISK , 2015, 1511.01923.

[42]  Dimitri Mawet,et al.  Archival legacy investigations of circumstellar environments: overview and first results , 2014, Astronomical Telescopes and Instrumentation.

[43]  Jeffrey L. Linsky,et al.  THE STRUCTURE OF THE LOCAL INTERSTELLAR MEDIUM. VI. NEW Mg ii, Fe ii, AND Mn ii OBSERVATIONS TOWARD STARS WITHIN 100 pc , 2014, 1403.8096.

[44]  Molecular Gas Clumps from the Destruction of Icy Bodies in the β Pictoris Debris Disk , 2014, Science.

[45]  Weinberger,et al.  The Circumstellar Disk of HD 141569 Imaged with NICMOS. , 1999, The Astrophysical journal.

[46]  David Mouillet,et al.  Photometric characterization of exoplanets using angular and spectral differential imaging , 2010, 1004.4825.

[47]  J. Wisniewski,et al.  PROBING FOR EXOPLANETS HIDING IN DUSTY DEBRIS DISKS: DISK IMAGING, CHARACTERIZATION, AND EXPLORATION WITH HST/STIS MULTI-ROLL CORONAGRAPHY , 2014, 1406.7303.

[48]  B. Matthews,et al.  Gas and dust around A-type stars at tens of Myr: signatures of cometary breakup , 2016, 1607.03695.