Robust Estimation Theory for Bad Data Diagnostics in Electric Power Systems

[1]  Emile H. L. Aarts,et al.  Simulated annealing and Boltzmann machines - a stochastic approach to combinatorial optimization and neural computing , 1990, Wiley-Interscience series in discrete mathematics and optimization.

[2]  P. Rousseeuw,et al.  Unmasking Multivariate Outliers and Leverage Points , 1990 .

[3]  D. Falcão,et al.  Linear programming state estimation: error analysis and gross error identification , 1988 .

[4]  Lamine Mili,et al.  Implementation of the hypothesis testing identification in power system state estimation , 1988 .

[5]  J. J. Allemong,et al.  Operating experience with the AEP state estimator , 1988 .

[6]  A. Bose,et al.  Real-time modeling of power networks , 1987, Proceedings of the IEEE.

[7]  Lamine Mili,et al.  Decision theory for fault diagnosis in electric power systems , 1987, Autom..

[8]  Felix F. Wu,et al.  Mutiple Bad Data Identwication for State Estimation by Combinatorial Oftimization , 1986, IEEE Transactions on Power Delivery.

[9]  A. Monticelli,et al.  Multiple Bad Data Detectability and Identifiability: A Geometric Approach , 1986, IEEE Transactions on Power Delivery.

[10]  M. M. Adibi,et al.  Remote Measurement Calibration , 1986, IEEE Transactions on Power Systems.

[11]  Werner A. Stahel,et al.  Robust Statistics: The Approach Based on Influence Functions , 1987 .

[12]  M. Ribbens-Pavella,et al.  Bad Data Identification Methods In Power System State Estimation-A Comparative Study , 1985, IEEE Transactions on Power Apparatus and Systems.

[13]  Fulin Zhuang,et al.  A Transformation-Decoupled Estimator for Power System State Estimation , 1985, IEEE Transactions on Power Apparatus and Systems.

[14]  F. Hampel The Breakdown Points of the Mean Combined With Some Rejection Rules , 1985 .

[15]  Development of a Least Absolute Value Power System Tracking State Estimator , 1985, IEEE Power Engineering Review.

[16]  Felix Wu,et al.  Network Observability: Identification of Observable Islands and Measurement Placement , 1985, IEEE Transactions on Power Apparatus and Systems.

[17]  Fulin Zhuang,et al.  Bad Data Suppression in Power System State Estimation with a Variable Quadratic-Constant Criterion , 1985, IEEE Power Engineering Review.

[18]  P. Rousseeuw Least Median of Squares Regression , 1984 .

[19]  M. Ribbens-Pavella,et al.  Hypothesis Testing Identification: A New Method for Bad Data Analysis in Power System State Estimation , 1984, IEEE Power Engineering Review.

[20]  Peter J. Rousseeuw,et al.  ROBUST REGRESSION BY MEANS OF S-ESTIMATORS , 1984 .

[21]  L. Holten,et al.  Design Of The Measurement System For State Estimation In The Norwegian High-Voltage Transmission Network , 1983, IEEE Transactions on Power Apparatus and Systems.

[22]  T. Van Cutsem,et al.  Critical Survey of Hierarchical Methods for State Estimation of Electric Power Systems , 1983, IEEE Power Engineering Review.

[23]  K.l. Lo,et al.  Development of a Static State Estimator Part I: Estimation and Bad Data Suppression , 1983, IEEE Transactions on Power Apparatus and Systems.

[24]  R. Welsch,et al.  Efficient Bounded-Influence Regression Estimation , 1982 .

[25]  A. Siegel Robust regression using repeated medians , 1982 .

[26]  M. Vidyasagar,et al.  Bad Data Rejection Properties of Weughted Least Absolute Value Techniques Applied to Static State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[27]  A. Brameller,et al.  Power System Tracking State Estimation and Bad Data Processing , 1982, IEEE Transactions on Power Apparatus and Systems.

[28]  Yu Er-keng,et al.  A New Approach for Detection and Identification of Multiple Bad Data in Power System State Estimation , 1982, IEEE Transactions on Power Apparatus and Systems.

[29]  W. W. Muir,et al.  Regression Diagnostics: Identifying Influential Data and Sources of Collinearity , 1980 .

[30]  G. Krumpholz,et al.  Power System Observability: A Practical Algorithm Using Network Topology , 1980, IEEE Transactions on Power Apparatus and Systems.

[31]  A. Monticelli,et al.  Fast Decoupled State Estimation and Bad Data Processing , 1979, IEEE Transactions on Power Apparatus and Systems.

[32]  V. Yohai,et al.  Bias- and efficiency-robustness of general M-estimators for regression with random carriers , 1979 .

[33]  M. R. Irving,et al.  Power System State Estimation Using Linear Programming , 1978 .

[34]  F. Broussolle,et al.  State Estimation in Power Systems: Detecting Bad Data through the Sparse Inverse Matrix Method , 1978, IEEE Transactions on Power Apparatus and Systems.

[35]  R. Maronna Robust $M$-Estimators of Multivariate Location and Scatter , 1976 .

[36]  E. Handschin,et al.  Bad data analysis for power system state estimation , 1975, IEEE Transactions on Power Apparatus and Systems.

[37]  E. Handschin,et al.  Static state estimation in electric power systems , 1974 .

[38]  F. Hampel The Influence Curve and Its Role in Robust Estimation , 1974 .

[39]  O. Alsac,et al.  Fast Decoupled Load Flow , 1974 .

[40]  P. J. Huber Robust Regression: Asymptotics, Conjectures and Monte Carlo , 1973 .

[41]  F. Hampel A General Qualitative Definition of Robustness , 1971 .

[42]  Fred C. Schweppe,et al.  Bad Data Suppression in Power System Static State Estimation , 1971 .

[43]  Fred C. Schweppe,et al.  Power System Static-State Estimation, Part I: Exact Model , 1970 .

[44]  F. Hampel Contributions to the theory of robust estimation , 1968 .

[45]  P. J. Huber Robust Estimation of a Location Parameter , 1964 .

[46]  F. J. Anscombe,et al.  Rejection of Outliers , 1960 .

[47]  J. Tukey A survey of sampling from contaminated distributions , 1960 .

[48]  G. Box NON-NORMALITY AND TESTS ON VARIANCES , 1953 .

[49]  E. S. Pearson,et al.  THE EFFICIENCY OF STATISTICAL TOOLS AND A CRITERION FOR THE REJECTION OF OUTLYING OBSERVATIONS , 1936 .