Markovianity in space and time

Markov chains in time, such as simple random walks, are at the heart of probability. In space, due to the absence of an obvious definition of past and future, a range of definitions of Markovianity have been proposed. In this paper, after a brief review, we introduce a new concept of Markovianity that aims to combine spatial and temporal conditional independence. 1. From Markov chain to Markov point process, and beyond This paper is devoted to the fundamental concept of Markovianity. Although its precise definition depends on the context, common ingredients are conditional in- dependence and factorisation formulae that allow to break up complex, or high dimensional, probabilities into manageable, lower dimensional components. Thus, computations can be greatly simplified, sometimes to the point that a detailed probabilistic analysis is possible. If that cannot be done, feasible, efficient simula- tion algorithms that exploit the relatively simple building blocks may usually be designed instead.

[1]  van Marie-Colette Lieshout,et al.  Markov Point Processes and Their Applications , 2000 .

[2]  D. Geman Random fields and inverse problems in imaging , 1990 .

[3]  Pál Révész,et al.  Random walk in random and non-random environments , 1990 .

[4]  M. N. M. van Lieshout,et al.  Perfect simulation for marked point processes , 2006, Comput. Stat. Data Anal..

[5]  A. Baddeley,et al.  Nearest-Neighbour Markov Point Processes and Random Sets , 1989 .

[6]  D. Stoyan Random Sets: Models and Statistics , 1998 .

[7]  Mathias Ortner,et al.  Processus ponctuels marqués pour l'extraction automatique de caricatures de bâtiments à partir de modèles numériques d'élévation , 2004 .

[8]  Jürgen Symanzik,et al.  Statistical Analysis of Spatial Point Patterns , 2005, Technometrics.

[9]  Charles J. Geyer,et al.  Likelihood inference for spatial point processes , 2019, Stochastic Geometry.

[10]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1951 .

[11]  M. Tanemura On random complete packing by discs , 1979 .

[12]  P. Ferrari,et al.  Perfect simulation for interacting point processes, loss networks and Ising models , 1999, math/9911162.

[13]  Kanti V. Mardia,et al.  Deformable Template Recognition of Multiple Occluded Objects , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[15]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .

[16]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[17]  W. Kendall,et al.  Perfect simulation using dominating processes on ordered spaces, with application to locally stable point processes , 2000, Advances in Applied Probability.

[18]  B. Ripley,et al.  Markov Point Processes , 1977 .

[19]  École d'été de probabilités de Saint-Flour,et al.  École d'Été de Probabilités de Saint-Flour XVIII - 1988 , 1991 .

[20]  J. Besag,et al.  Statistical Analysis of Spatial Point Patterns by Means of Distance Methods , 1976 .

[21]  James W. Evans,et al.  Random and cooperative sequential adsorption , 1993 .

[22]  Eva B. Vedel Jensen,et al.  Inhomogeneous spatial point processes by location-dependent scaling , 2003, Advances in Applied Probability.

[23]  C. Preston Spatial birth and death processes , 1975, Advances in Applied Probability.

[24]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[25]  Kai Lai Chung,et al.  Markov Chains with Stationary Transition Probabilities , 1961 .

[26]  W. Winkler Kai Lai Chung, Markov Chains with Stationary Transition Probabilities. (Die Grundlehren der mathematischen Wissenschaften, Band 104.) X + 278 S. Berlin/Göttingen/Heidelberg 1960. Springer‐Verlag. Preis geb. DM 65,60 , 1960 .

[27]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.