Unsupervised Detection and Tracking of Arbitrary Objects with Dependent Dirichlet Process Mixtures

This paper proposes a technique for the unsupervised detection and tracking of arbitrary objects in videos. It is intended to reduce the need for detection and localization methods tailored to specific object types and serve as a general framework applicable to videos with varied objects, backgrounds, and image qualities. The technique uses a dependent Dirichlet process mixture (DDPM) known as the Generalized Polya Urn (GPUDDPM) to model image pixel data that can be easily and efficiently extracted from the regions in a video that represent objects. This paper describes a specific implementation of the model using spatial and color pixel data extracted via frame differencing and gives two algorithms for performing inference in the model to accomplish detection and tracking. This technique is demonstrated on multiple synthetic and benchmark video datasets that illustrate its ability to, without modification, detect and track objects with diverse physical characteristics moving over non-uniform backgrounds and through occlusion.

[1]  Demin Wang Unsupervised video segmentation based on watersheds and temporal tracking , 1998, IEEE Trans. Circuits Syst. Video Technol..

[2]  Stephen J. McKenna,et al.  Tracking interacting people , 2000, Proceedings Fourth IEEE International Conference on Automatic Face and Gesture Recognition (Cat. No. PR00580).

[3]  Arnaud Doucet,et al.  Generalized Polya Urn for Time-varying Dirichlet Process Mixtures , 2007, UAI.

[4]  Shaogang Gong,et al.  Tracking colour objects using adaptive mixture models , 1999, Image Vis. Comput..

[5]  Hai Tao,et al.  A background layer model for object tracking through occlusion , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[6]  Jing Zhang,et al.  Framework for Performance Evaluation of Face, Text, and Vehicle Detection and Tracking in Video: Data, Metrics, and Protocol , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[7]  Emilio Maggio,et al.  Multi-feature Graph-Based Object Tracking , 2006, CLEAR.

[8]  Arthur E. C. Pece,et al.  Generative-model-based tracking by cluster analysis of image differences , 2002, Robotics Auton. Syst..

[9]  Wei Xiong,et al.  Moving Object Extraction with a Hand-held Camera , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[10]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[11]  Patrick Pérez,et al.  Maintaining multimodality through mixture tracking , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[12]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[13]  James W. Davis,et al.  Learning Scene Entries and Exits Using Coherent Motion Regions , 2010, ISVC.

[14]  Luc Van Gool,et al.  Robust tracking-by-detection using a detector confidence particle filter , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[15]  David J. Fleet,et al.  People tracking using hybrid Monte Carlo filtering , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[16]  Hongxia Chu,et al.  Object Tracking Algorithm Based on Camshift Algorithm Combinating with Difference in Frame , 2007, 2007 IEEE International Conference on Automation and Logistics.

[17]  Anil K. Jain,et al.  Object detection using gabor filters , 1997, Pattern Recognit..

[18]  Frank Dellaert,et al.  An MCMC-Based Particle Filter for Tracking Multiple Interacting Targets , 2004, ECCV.

[19]  Jenq-Neng Hwang,et al.  Fast and automatic video object segmentation and tracking for content-based applications , 2002, IEEE Trans. Circuits Syst. Video Technol..

[20]  Yannick Boursier,et al.  Sparsity-driven people localization algorithm: Evaluation in crowded scenes environments , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[21]  Jitendra Malik,et al.  Object Segmentation by Long Term Analysis of Point Trajectories , 2010, ECCV.

[22]  Horst Bischof,et al.  Human Tracking by Fast Mean Shift Mode Seeking , 2006, J. Multim..

[23]  Ramakant Nevatia,et al.  Speed Performance Improvement of Vehicle Blob Tracking System , 2007, CLEAR.

[24]  A. M. Tekalp,et al.  Multiple camera tracking of interacting and occluded human motion , 2001, Proc. IEEE.

[25]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[26]  Rita Cucchiara,et al.  Probabilistic people tracking for occlusion handling , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[27]  J. Munkres ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .

[28]  Ramakant Nevatia,et al.  A model-based vehicle segmentation method for tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[29]  Haroon Idrees,et al.  Detection and Tracking of Large Number of Targets in Wide Area Surveillance , 2010, ECCV.

[30]  Guojun Lu,et al.  Segmentation of moving objects in image sequence: A review , 2001 .

[31]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Eric Moulines,et al.  Comparison of resampling schemes for particle filtering , 2005, ISPA 2005. Proceedings of the 4th International Symposium on Image and Signal Processing and Analysis, 2005..

[33]  Sharath Pankanti,et al.  Appearance models for occlusion handling , 2006, Image Vis. Comput..

[34]  Shaogang Gong,et al.  Tracking and segmenting people in varying lighting conditions using colour , 1998, Proceedings Third IEEE International Conference on Automatic Face and Gesture Recognition.

[35]  Rachid Deriche,et al.  Geodesic Active Contours and Level Sets for the Detection and Tracking of Moving Objects , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[36]  Roberto Cipolla,et al.  Unsupervised Bayesian Detection of Independent Motion in Crowds , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[37]  Rangasami L. Kashyap,et al.  Unsupervised video segmentation and object tracking , 2000 .

[38]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[39]  Alexei A. Efros,et al.  Discovering objects and their location in images , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[40]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[41]  Mei Han,et al.  A detection-based multiple object tracking method , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[42]  A. Ellis,et al.  PETS2010 and PETS2009 Evaluation of Results Using Individual Ground Truthed Single Views , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[43]  Michael J. Black,et al.  A nonparametric Bayesian alternative to spike sorting , 2008, Journal of Neuroscience Methods.

[44]  David J. Fleet,et al.  Robust Online Appearance Models for Visual Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[45]  G. Rigoll,et al.  Multi camera person tracking applying a graph-cuts based foreground segmentation in a homography framework , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[46]  David S. Doermann,et al.  Tools and techniques for video performance evaluation , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[47]  Rachid Deriche,et al.  Unsupervised Segmentation Incorporating Colour, Texture, and Motion , 2003, CAIP.

[48]  F. Fleuret,et al.  Multiple object tracking using flow linear programming , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[49]  Andrew Blake,et al.  A Probabilistic Exclusion Principle for Tracking Multiple Objects , 2000, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[50]  Chris Stauffer,et al.  Estimating Tracking Sources and Sinks , 2003, 2003 Conference on Computer Vision and Pattern Recognition Workshop.

[51]  Katerina Fragkiadaki,et al.  Detection free tracking: Exploiting motion and topology for segmenting and tracking under entanglement , 2011, CVPR 2011.

[52]  Robert T. Collins,et al.  Evaluation of sampling-based pedestrian detection for crowd counting , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[53]  Massimo Piccardi,et al.  Background subtraction techniques: a review , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[54]  Liang-Gee Chen,et al.  Efficient moving object segmentation algorithm using background registration technique , 2002, IEEE Trans. Circuits Syst. Video Technol..

[55]  Bruce A. Draper,et al.  Simple real-time human detection using a single correlation filter , 2009, 2009 Twelfth IEEE International Workshop on Performance Evaluation of Tracking and Surveillance.

[56]  Luc Van Gool,et al.  Markovian tracking-by-detection from a single, uncalibrated camera , 2009 .

[57]  Robert T. Collins,et al.  Mean-shift blob tracking through scale space , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[58]  Yee Whye Teh,et al.  Dependent Dirichlet Process Spike Sorting , 2008, NIPS.

[59]  Alexandre R. J. François Real-Time Multi-Resolution Blob Tracking , 2004 .

[60]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[61]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[62]  Luc Van Gool,et al.  Coupled Object Detection and Tracking from Static Cameras and Moving Vehicles , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[63]  Mario Vento,et al.  Performance Evaluation of a People Tracking System on PETS2009 Database , 2010, 2010 7th IEEE International Conference on Advanced Video and Signal Based Surveillance.

[64]  Wen Gao,et al.  Automatic Multi-Player Detection and Tracking in Broadcast Sports Video using Support Vector Machine and Particle Filter , 2006, 2006 IEEE International Conference on Multimedia and Expo.

[65]  Pao-Chi Chang,et al.  Real-Time Foreground Segmentation for the Moving Camera Based on H.264 Video Coding Information , 2007, Future Generation Communication and Networking (FGCN 2007).