Linear Discrimination, Ordination, and the Visualization of Selection Gradients in Modern Morphometrics

Linear discriminant analysis (LDA) is a multivariate classification technique frequently applied to morphometric data in various biomedical disciplines. Canonical variate analysis (CVA), the generalization of LDA for multiple groups, is often used in the exploratory style of an ordination technique (a low-dimensional representation of the data). In the rare case when all groups have the same covariance matrix, maximum likelihood classification can be based on these linear functions. Both LDA and CVA require full-rank covariance matrices, which is usually not the case in modern morphometrics. When the number of variables is close to the number of individuals, groups appear separated in a CVA plot even if they are samples from the same population. Hence, reliable classification and assessment of group separation require many more organisms than variables. A simple alternative to CVA is the projection of the data onto the principal components of the group averages (between-group PCA). In contrast to CVA, these axes are orthogonal and can be computed even when the data are not of full rank, such as for Procrustes shape coordinates arising in samples of any size, and when covariance matrices are heterogeneous. In evolutionary quantitative genetics, the selection gradient is identical to the coefficient vector of a linear discriminant function between the populations before vs. after selection. When the measured variables are Procrustes shape coordinates, discriminant functions and selection gradients are vectors in shape space and can be visualized as shape deformations. Except for applications in quantitative genetics and in classification, however, discriminant functions typically offer no interpretation as biological factors.

[1]  Norman MacLeod,et al.  A Comparison Between Morphometric and Artificial Neural-Net Approaches to the Automated Species-Recognition Problem in Systematics , 2004 .

[2]  F. Bookstein,et al.  Heterochrony and geometric morphometrics: a comparison of cranial growth in Pan paniscus versus Pan troglodytes , 2005, Evolution & development.

[3]  C. Zollikofer,et al.  Visualizing patterns of craniofacial shape variation in Homo sapiens , 2002, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[4]  Dennis E. Slice,et al.  Modern Morphometrics In Physical Anthropology , 2005 .

[5]  P. Forey,et al.  Morphology, shape and phylogeny , 2002 .

[6]  S. Leal Genetics and Analysis of Quantitative Traits , 2001 .

[7]  T. P. Burnaby Growth-Invariant Discriminant Functions and Generalized Distances , 1966 .

[8]  Guy Perrière,et al.  Between-group analysis of microarray data , 2002, Bioinform..

[9]  Benzion Boukai,et al.  The Discrimination Subspace Model , 1997 .

[10]  Simon M. Huttegger,et al.  Invariance and Meaningfulness in Phenotype spaces , 2011, Evolutionary Biology.

[11]  S. J. Arnold,et al.  The adaptive landscape as a conceptual bridge between micro- and macroevolution. , 2001 .

[12]  Terence J. O'Neill Error rates of non-Bayes classification rules and the robustness of Fisher's linear discriminant function , 1992 .

[13]  Clive E. Bowman,et al.  Megavariate Genetics: What You Find Is What You Go Looking For , 2009 .

[14]  Trish E. Parsons,et al.  Deciphering the Palimpsest: Studying the Relationship Between Morphological Integration and Phenotypic Covariation , 2009, Evolutionary Biology.

[15]  L. F. Marcus,et al.  Identifying isolated shark teeth of the genus Carcharhinus to species : relevance for tracking phyletic change through the fossil record. American Museum novitates ; no. 3109 , 1994 .

[16]  S. J. Arnold,et al.  THE MEASUREMENT OF SELECTION ON CORRELATED CHARACTERS , 1983, Evolution; international journal of organic evolution.

[17]  HETEROCHRONY AND ALLOMETRY: LESSONS FROM THE WATER STRIDER GENUS LIMNOPORUS , 1993, Evolution; international journal of organic evolution.

[18]  N. L. Johnson,et al.  Multivariate Analysis , 1958, Nature.

[19]  Carl J. Huberty,et al.  An Introduction to Discriminant Analysis. , 1989 .

[20]  Mayer Aladjem,et al.  Regularized discriminant analysis for face recognition , 2004, Pattern Recognit..

[21]  P. Gunz,et al.  Geometric Morphometrics , 2019, Archaeological Science.

[22]  S. Lele,et al.  Euclidean distance matrix analysis: a coordinate-free approach for comparing biological shapes using landmark data. , 1991, American journal of physical anthropology.

[23]  Katerina Harvati,et al.  Quantitative analysis of Neanderthal temporal bone morphology using three-dimensional geometric morphometrics. , 2003, American journal of physical anthropology.

[24]  Anne-Laure Boulesteix,et al.  A note on between-group PCA , 2004 .

[25]  F L Bookstein,et al.  Biometrics, biomathematics and the morphometric synthesis. , 1996, Bulletin of mathematical biology.

[26]  Reinhard Bürger,et al.  Understanding The Evolution And Stability Of The G-Matrix , 2008, Evolution; international journal of organic evolution.

[27]  Philipp Mitteroecker,et al.  The Ontogenetic Trajectory of the Phenotypic Covariance Matrix, with Examples from Craniofacial Shape in Rats and Humans , 2009, Evolution; international journal of organic evolution.

[28]  P. O’Higgins,et al.  Patterns of morphological evolution in Marmota (Rodentia, Sciuridae): geometric morphometrics of the cranium in the context of marmot phylogeny, ecology and conservation , 2004 .

[29]  I. Jolliffe Principal Component Analysis , 2002 .

[30]  P. D. Polly,et al.  Geometric morphometrics: recent applications to the study of evolution and development , 2010 .

[31]  Simon M. Huttegger,et al.  The Concept of Morphospaces in Evolutionary and Developmental Biology: Mathematics and Metaphors , 2009 .

[32]  Erika Kristensen,et al.  Phenotypic variability and craniofacial dysmorphology: increased shape variance in a mouse model for cleft lip , 2008, Journal of anatomy.

[33]  F. Bookstein,et al.  The conceptual and statistical relationship between modularity and morphological integration. , 2007, Systematic biology.

[34]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[35]  Greg Gibson,et al.  Epidermal Growth Factor Receptor and Transforming Growth Factor-β Signaling Contributes to Variation for Wing Shape in Drosophila melanogaster , 2006, Genetics.

[36]  Marko Grobelnik,et al.  Subspace, Latent Structure and Feature Selection, Statistical and Optimization, Perspectives Workshop, SLSFS 2005, Bohinj, Slovenia, February 23-25, 2005, Revised Selected Papers , 2006, SLSFS.

[37]  B. Hallgrímsson,et al.  The brachymorph mouse and the developmental‐genetic basis for canalization and morphological integration , 2006, Evolution & development.

[38]  S. Wright General, Group and Special Size Factors. , 1932, Genetics.

[39]  C J Huberty,et al.  Linear Versus Quadratic Multivariate Classification. , 1978, Multivariate behavioral research.

[40]  S. R. Searle,et al.  On Deriving the Inverse of a Sum of Matrices , 1981 .

[41]  R. Fisher THE USE OF MULTIPLE MEASUREMENTS IN TAXONOMIC PROBLEMS , 1936 .

[42]  F. Rohlf,et al.  Extensions of the Procrustes Method for the Optimal Superimposition of Landmarks , 1990 .

[43]  Fred L. Bookstein,et al.  A Comment on Shearing as a Method for “Size Correction” , 1987 .

[44]  Norman MacLeod,et al.  Generalizing and extending the eigenshape method of shape space visualization and analysis , 1999, Paleobiology.

[45]  P. Gunz,et al.  Advances in Geometric Morphometrics , 2009, Evolutionary Biology.

[46]  G. McLachlan Discriminant Analysis and Statistical Pattern Recognition , 1992 .

[47]  J. Merilä,et al.  Contrasting patterns of body shape and neutral genetic divergence in marine and lake populations of threespine sticklebacks , 2006, Journal of evolutionary biology.

[48]  F. Bookstein,et al.  Semilandmarks in Three Dimensions , 2005 .

[49]  D. J. Funk,et al.  MORPHOMETRIC INFERENCES ON SIBLING SPECIES AND SEXUAL DIMORPHISM IN NEOCHLAMISUS BEBBIANAE LEAF BEETLES: MULTIVARIATE APPLICATIONS OF THE THIN-PLATE SPLINE , 1997 .

[50]  F. Rohlf,et al.  A revolution morphometrics. , 1993, Trends in ecology & evolution.

[51]  R. Jorissen,et al.  Epidermal growth factor receptor , 2003 .

[52]  Christophe Boesch,et al.  Discrimination of extant Pan species and subspecies using the enamel-dentine junction morphology of lower molars. , 2009, American journal of physical anthropology.

[53]  C. R. Rao,et al.  The Utilization of Multiple Measurements in Problems of Biological Classification , 1948 .

[54]  Anuj Srivastava,et al.  Statistical shape analysis: clustering, learning, and testing , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[55]  R. Lande QUANTITATIVE GENETIC ANALYSIS OF MULTIVARIATE EVOLUTION, APPLIED TO BRAIN:BODY SIZE ALLOMETRY , 1979, Evolution; international journal of organic evolution.

[56]  P. O’Higgins The study of morphological variation in the hominid fossil record: biology, landmarks and geometry , 2000, Journal of anatomy.

[57]  Roman Rosipal,et al.  Overview and Recent Advances in Partial Least Squares , 2005, SLSFS.

[58]  E. K. Kemsley,et al.  Discriminant analysis of high-dimensional data: a comparison of principal components analysis and partial least squares data reduction methods , 1996 .

[59]  F. Rohlf,et al.  Geometric morphometrics: Ten years of progress following the ‘revolution’ , 2004 .

[60]  G. Wagner,et al.  Measuring Evolutionary Constraints Through the Dimensionality of the Phenotype: Adjusted Bootstrap Method to Estimate Rank of Phenotypic Covariance Matrices , 2009, Evolutionary Biology.

[61]  F. Rohlf,et al.  Morphometric Analysis of Old World Talpidae (Mammalia, Insectivora) Using Partial-Warp Scores , 1996 .

[62]  H David Sheets,et al.  Comparison of geometric morphometric outline methods in the discrimination of age-related differences in feather shape , 2006, Frontiers in Zoology.

[63]  M. Barker,et al.  Partial least squares for discrimination , 2003 .

[64]  Richard A. Johnson,et al.  Applied Multivariate Statistical Analysis , 1983 .

[65]  R. Sokal,et al.  Numerical Taxonomy: The Principles and Practice of Numerical Classification. , 1975 .

[66]  David G. Stork,et al.  Pattern Classification , 1973 .

[67]  W. Atchley,et al.  THE GEOMETRY OF CANONICAL VARIATE ANALYSIS , 1981 .

[68]  Creases as morphometric characters , 2002 .

[69]  F. Bookstein,et al.  The Evolutionary Role of Modularity and Integration in the Hominoid Cranium , 2008, Evolution; international journal of organic evolution.

[70]  C. Klingenberg,et al.  Distances and directions in multidimensional shape spaces: implications for morphometric applications. , 2005, Systematic biology.

[71]  R. Fisher THE STATISTICAL UTILIZATION OF MULTIPLE MEASUREMENTS , 1938 .

[72]  F. Bookstein,et al.  Comparison of cranial ontogenetic trajectories among great apes and humans. , 2004, Journal of human evolution.

[73]  F. Bookstein,et al.  Morphometric Tools for Landmark Data: Geometry and Biology , 1999 .