Application of Principal Component Analysis to CHAMP Radio Occultation Data for Quality Control and a Diagnostic Study

Abstract A principal component analysis (PCA) method is applied to Challenging Minisatellite Payload (CHAMP) level-2 radio occultation (RO) observations and the corresponding global analyses from the National Centers for Environmental Prediction (NCEP) in March 2004. The PCA is performed on a square symmetric vertical correlation matrix of observed or modeled RO profiles. By decomposing the matrix into pairs of loadings (EOFs) and associated principal components (PCs), outliers are identified and important modes that explain most variances of the vertical variability of the atmosphere as represented by the GPS RO data and the NCEP analyses are extracted and compared. Specifically, a quality control of RO data based on Hotelling’s T 2 index is applied first, which removes 255 RO profiles from 4884 total profiles (about 5%) and smoothes the distributions of PC modes, making the remaining GPS RO dataset much more meaningful. The leading PC mode for global refractivity explains 60% of the total variance and i...

[1]  John R. Lanzante,et al.  Resistant, Robust and Non-Parametric Techniques for the Analysis of Climate Data: Theory and Examples, Including Applications to Historical Radiosonde Station Data , 1996 .

[2]  Ying-Hwa Kuo,et al.  Assimilation of GPS radio occultation data for numerical weather prediction , 2000 .

[3]  Anthony J. Mannucci,et al.  CHAMP and SAC-C atmospheric occultation results and intercomparisons , 2004 .

[4]  J. Schofield,et al.  Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System , 1997 .

[5]  C. Marquardt,et al.  Forecast impact experiment with GPS radio occultation measurements , 2005 .

[6]  Thomas P. Yunck,et al.  A History of GPS Sounding , 2000 .

[7]  Christian Rocken,et al.  Inversion and error estimation of GPS radio occultation Data , 2004 .

[8]  Sergey Sokolovskiy,et al.  Tracking tropospheric radio occultation signals from low Earth orbit , 2001 .

[9]  Xiaoqing Pi,et al.  COSMIC GPS Ionospheric Sensing and Space Weather , 2000 .

[10]  Luis Kornblueh,et al.  Analysis and validation of challenging minisatellite payload (CHAMP) radio occultation data , 2003 .

[11]  Applying artificial neural network to the short‐term prediction of electron density structure using GPS occultation data , 2002 .

[12]  Steven Businger,et al.  GPS Sounding of the Atmosphere from Low Earth Orbit: Preliminary Results , 1996 .

[13]  X. Zou,et al.  A ray-tracing operator and its adjoint for the use of GPS/MET refraction angle measurements , 1999 .

[14]  Xiaolei Zou,et al.  A quality control procedure for GPS radio occultation data , 2006 .

[15]  W. Bertiger,et al.  A technical description of atmospheric sounding by GPS occultation , 2002 .

[16]  W. G. Melbourne,et al.  Initial Results of Radio Occultation Observations of Earth's Atmosphere Using the Global Positioning System , 1996, Science.

[17]  H. Storch,et al.  Statistical Analysis in Climate Research , 2000 .

[18]  Christian Rocken,et al.  A Global Morphology of Gravity Wave Activity in the Stratosphere Revealed by the GPS Occultation Data (GPS/MET) , 2000 .

[19]  R. Preisendorfer,et al.  Principal Component Analysis in Meteorology and Oceanography , 1988 .

[20]  Ying-Hwa Kuo,et al.  Assimilation of Atmospheric Radio Refractivity Using a Nonhydrostatic Adjoint Model , 1995 .

[21]  Gottfried Kirchengast,et al.  Inversion, error analysis, and validation of GPS/MET occultation data , 1999 .

[22]  Frederick Mosteller,et al.  Understanding robust and exploratory data analysis , 1983 .

[23]  I. Jolliffe Principal Component Analysis , 2002 .

[24]  X. Zou,et al.  Analysis and validation of GPS/MET data in the neutral atmosphere , 1997 .

[25]  G. Kirchengast,et al.  Gravity Wave Spectra from GPS/MET Occultation Observations , 2000 .