On the Extension of the DIRECT Algorithm to Multiple Objectives
暂无分享,去创建一个
[1] Antanas Žilinskas,et al. On one-step worst-case optimal trisection in univariate bi-objective Lipschitz optimization , 2016, Commun. Nonlinear Sci. Numer. Simul..
[2] Kaisa Miettinen,et al. Exact extension of the DIRECT algorithm to multiple objectives , 2019 .
[3] A. L. Custódio,et al. MultiGLODS: global and local multiobjective optimization using direct search , 2018, Journal of Global Optimization.
[4] A. Wierzbicki. On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .
[5] Remigijus Paulavičius,et al. Globally-biased BIRECT algorithm with local accelerators for expensive global optimization , 2020, Expert Syst. Appl..
[6] Kalyanmoy Deb,et al. Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.
[7] A. L. Custódio,et al. GLODS: Global and Local Optimization using Direct Search , 2014, Journal of Global Optimization.
[8] Sundaram Suresh,et al. Dividing rectangles attack multi-objective optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).
[9] Y. Evtushenko,et al. A Nondifferentiable Approach to Multicriteria Optimization , 1985 .
[10] M. Dellnitz,et al. Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .
[11] Qi Shuai,et al. Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis , 2017, 1708.02968.
[12] Alberto Lovison,et al. Singular Continuation: Generating Piecewise Linear Approximations to Pareto Sets via Global Analysis , 2010, SIAM J. Optim..
[13] Yaroslav D. Sergeyev,et al. Guest editors’ preface to the special issue devoted to the 2nd International Conference “Numerical Computations: Theory and Algorithms”, June 19–25, 2016, Pizzo Calabro, Italy , 2018, J. Glob. Optim..
[14] B. Shubert. A Sequential Method Seeking the Global Maximum of a Function , 1972 .
[15] Victor P. Gergel,et al. Efficient multicriterial optimization based on intensive reuse of search information , 2018, Journal of Global Optimization.
[16] Alberto Lovison,et al. On Generalizing Lipschitz Global Methods for Multiobjective Optimization , 2015, EMO.
[17] Stefano Lucidi,et al. A multi-objective DIRECT algorithm for ship hull optimization , 2018, Comput. Optim. Appl..
[18] Alberto Lovison,et al. Global search perspectives for multiobjective optimization , 2013, J. Glob. Optim..
[19] W. de Melo,et al. On the structure of the pareto set of generic mappings , 1976 .
[20] Joshua D. Knowles,et al. ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.
[21] Qi Shuai,et al. A Multi-Objective DIRECT Algorithm Towards Structural Damage Identification with Limited Dynamic Response Information , 2017, ArXiv.
[22] E. Allgower,et al. An Algorithm for Piecewise-Linear Approximation of an Implicitly Defined Manifold , 1985 .
[23] Charles Audet,et al. A mesh adaptive direct search algorithm for multiobjective optimization , 2009, Eur. J. Oper. Res..
[24] A. Wierzbicki. A Mathematical Basis for Satisficing Decision Making , 1982 .
[25] Yaroslav D. Sergeyev,et al. GOSH: derivative-free global optimization using multi-dimensional space-filling curves , 2018, J. Glob. Optim..
[26] Y. Sergeyev. On convergence of "divide the best" global optimization algorithms , 1998 .
[27] C. D. Perttunen,et al. Lipschitzian optimization without the Lipschitz constant , 1993 .
[28] Abdullah Al-Dujaili,et al. Hypervolume-Based DIRECT for Multi-Objective Optimisation , 2016, GECCO.
[29] Yaroslav D. Sergeyev,et al. Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..
[30] Roman G. Strongin,et al. Global optimization with non-convex constraints , 2000 .
[31] A. Neumaier. Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.
[32] Luís N. Vicente,et al. Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..
[33] Antanas Zilinskas,et al. A one-step worst-case optimal algorithm for bi-objective univariate optimization , 2014, Optim. Lett..
[34] John E. Dennis,et al. Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..
[35] Kaisa Miettinen,et al. Nonlinear multiobjective optimization , 1998, International series in operations research and management science.
[36] S. A. Piyavskii. An algorithm for finding the absolute extremum of a function , 1972 .
[37] Filippo Pecci,et al. Hierarchical stratification of Pareto sets , 2014, 1407.1755.
[38] Nicola Beume,et al. An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.
[39] Panos M. Pardalos,et al. Non-Convex Multi-Objective Optimization , 2017 .
[40] Kaisa Miettinen,et al. PAINT: Pareto front interpolation for nonlinear multiobjective optimization , 2012, Comput. Optim. Appl..
[41] Tomoyuki Hiroyasu,et al. Examination of multi-objective optimization method for global search using DIRECT and GA , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).
[42] Mikhail Posypkin,et al. A deterministic algorithm for global multi-objective optimization , 2014, Optim. Methods Softw..
[43] C. Stephens,et al. Global Optimization Requires Global Information , 1998 .
[44] S. Smale,et al. Global Analysis and Economics I: Pareto Optimum and a Generalization of Morse Theory† , 1975 .
[45] Alberto Lovison,et al. PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization , 2014, Journal of Global Optimization.
[46] Kalyanmoy Deb,et al. Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.