On the Extension of the DIRECT Algorithm to Multiple Objectives

Deterministic global optimization algorithms like Piyavskii–Shubert, direct, ego and many more, have a recognized standing, for problems with many local optima. Although many single objective optimization algorithms have been extended to multiple objectives, completely deterministic algorithms for nonlinear problems with guarantees of convergence to global Pareto optimality are still missing. For instance, deterministic algorithms usually make use of some form of scalarization, which may lead to incomplete representations of the Pareto optimal set. Thus, all global Pareto optima may not be obtained, especially in nonconvex cases. On the other hand, algorithms attempting to produce representations of the globally Pareto optimal set are usually based on heuristics. We analyze the concept of global convergence for multiobjective optimization algorithms and propose a convergence criterion based on the Hausdorff distance in the decision space. Under this light, we consider the well-known global optimization algorithm direct, analyze the available algorithms in the literature that extend direct to multiple objectives and discuss possible alternatives. In particular, we propose a novel definition for the notion of potential Pareto optimality extending the notion of potential optimality defined in direct. We also discuss its advantages and disadvantages when compared with algorithms existing in the literature.

[1]  Antanas Žilinskas,et al.  On one-step worst-case optimal trisection in univariate bi-objective Lipschitz optimization , 2016, Commun. Nonlinear Sci. Numer. Simul..

[2]  Kaisa Miettinen,et al.  Exact extension of the DIRECT algorithm to multiple objectives , 2019 .

[3]  A. L. Custódio,et al.  MultiGLODS: global and local multiobjective optimization using direct search , 2018, Journal of Global Optimization.

[4]  A. Wierzbicki On the completeness and constructiveness of parametric characterizations to vector optimization problems , 1986 .

[5]  Remigijus Paulavičius,et al.  Globally-biased BIRECT algorithm with local accelerators for expensive global optimization , 2020, Expert Syst. Appl..

[6]  Kalyanmoy Deb,et al.  Multi-objective optimization using evolutionary algorithms , 2001, Wiley-Interscience series in systems and optimization.

[7]  A. L. Custódio,et al.  GLODS: Global and Local Optimization using Direct Search , 2014, Journal of Global Optimization.

[8]  Sundaram Suresh,et al.  Dividing rectangles attack multi-objective optimization , 2016, 2016 IEEE Congress on Evolutionary Computation (CEC).

[9]  Y. Evtushenko,et al.  A Nondifferentiable Approach to Multicriteria Optimization , 1985 .

[10]  M. Dellnitz,et al.  Covering Pareto Sets by Multilevel Subdivision Techniques , 2005 .

[11]  Qi Shuai,et al.  Structural damage identification using piezoelectric impedance measurement with sparse inverse analysis , 2017, 1708.02968.

[12]  Alberto Lovison,et al.  Singular Continuation: Generating Piecewise Linear Approximations to Pareto Sets via Global Analysis , 2010, SIAM J. Optim..

[13]  Yaroslav D. Sergeyev,et al.  Guest editors’ preface to the special issue devoted to the 2nd International Conference “Numerical Computations: Theory and Algorithms”, June 19–25, 2016, Pizzo Calabro, Italy , 2018, J. Glob. Optim..

[14]  B. Shubert A Sequential Method Seeking the Global Maximum of a Function , 1972 .

[15]  Victor P. Gergel,et al.  Efficient multicriterial optimization based on intensive reuse of search information , 2018, Journal of Global Optimization.

[16]  Alberto Lovison,et al.  On Generalizing Lipschitz Global Methods for Multiobjective Optimization , 2015, EMO.

[17]  Stefano Lucidi,et al.  A multi-objective DIRECT algorithm for ship hull optimization , 2018, Comput. Optim. Appl..

[18]  Alberto Lovison,et al.  Global search perspectives for multiobjective optimization , 2013, J. Glob. Optim..

[19]  W. de Melo,et al.  On the structure of the pareto set of generic mappings , 1976 .

[20]  Joshua D. Knowles,et al.  ParEGO: a hybrid algorithm with on-line landscape approximation for expensive multiobjective optimization problems , 2006, IEEE Transactions on Evolutionary Computation.

[21]  Qi Shuai,et al.  A Multi-Objective DIRECT Algorithm Towards Structural Damage Identification with Limited Dynamic Response Information , 2017, ArXiv.

[22]  E. Allgower,et al.  An Algorithm for Piecewise-Linear Approximation of an Implicitly Defined Manifold , 1985 .

[23]  Charles Audet,et al.  A mesh adaptive direct search algorithm for multiobjective optimization , 2009, Eur. J. Oper. Res..

[24]  A. Wierzbicki A Mathematical Basis for Satisficing Decision Making , 1982 .

[25]  Yaroslav D. Sergeyev,et al.  GOSH: derivative-free global optimization using multi-dimensional space-filling curves , 2018, J. Glob. Optim..

[26]  Y. Sergeyev On convergence of "divide the best" global optimization algorithms , 1998 .

[27]  C. D. Perttunen,et al.  Lipschitzian optimization without the Lipschitz constant , 1993 .

[28]  Abdullah Al-Dujaili,et al.  Hypervolume-Based DIRECT for Multi-Objective Optimisation , 2016, GECCO.

[29]  Yaroslav D. Sergeyev,et al.  Global Search Based on Efficient Diagonal Partitions and a Set of Lipschitz Constants , 2006, SIAM J. Optim..

[30]  Roman G. Strongin,et al.  Global optimization with non-convex constraints , 2000 .

[31]  A. Neumaier Complete search in continuous global optimization and constraint satisfaction , 2004, Acta Numerica.

[32]  Luís N. Vicente,et al.  Direct Multisearch for Multiobjective Optimization , 2011, SIAM J. Optim..

[33]  Antanas Zilinskas,et al.  A one-step worst-case optimal algorithm for bi-objective univariate optimization , 2014, Optim. Lett..

[34]  John E. Dennis,et al.  Normal-Boundary Intersection: A New Method for Generating the Pareto Surface in Nonlinear Multicriteria Optimization Problems , 1998, SIAM J. Optim..

[35]  Kaisa Miettinen,et al.  Nonlinear multiobjective optimization , 1998, International series in operations research and management science.

[36]  S. A. Piyavskii An algorithm for finding the absolute extremum of a function , 1972 .

[37]  Filippo Pecci,et al.  Hierarchical stratification of Pareto sets , 2014, 1407.1755.

[38]  Nicola Beume,et al.  An EMO Algorithm Using the Hypervolume Measure as Selection Criterion , 2005, EMO.

[39]  Panos M. Pardalos,et al.  Non-Convex Multi-Objective Optimization , 2017 .

[40]  Kaisa Miettinen,et al.  PAINT: Pareto front interpolation for nonlinear multiobjective optimization , 2012, Comput. Optim. Appl..

[41]  Tomoyuki Hiroyasu,et al.  Examination of multi-objective optimization method for global search using DIRECT and GA , 2008, 2008 IEEE Congress on Evolutionary Computation (IEEE World Congress on Computational Intelligence).

[42]  Mikhail Posypkin,et al.  A deterministic algorithm for global multi-objective optimization , 2014, Optim. Methods Softw..

[43]  C. Stephens,et al.  Global Optimization Requires Global Information , 1998 .

[44]  S. Smale,et al.  Global Analysis and Economics I: Pareto Optimum and a Generalization of Morse Theory† , 1975 .

[45]  Alberto Lovison,et al.  PAINT–SiCon: constructing consistent parametric representations of Pareto sets in nonconvex multiobjective optimization , 2014, Journal of Global Optimization.

[46]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.