The Undirected Feedback Vertex Set Problem Has a Poly(k) Kernel

Resolving a noted open problem, we show that the Undirected Feedback Vertex Set problem, parameterized by the size of the solution set of vertices, is in the parameterized complexity class Poly(k), that is, polynomial-time pre-processing is sufficient to reduce an initial problem instance (G,k) to a decision-equivalent simplified instance (G′,k′) where k′ ≤k, and the number of vertices of G′ is bounded by a polynomial function of k. Our main result shows an O(k11) kernelization bound.

[1]  Michael R. Fellows,et al.  Kernelization Algorithms for the Vertex Cover Problem: Theory and Experiments , 2004, ALENEX/ANALC.

[2]  Christian Sloper,et al.  TECHNIQUES IN PARAMETERIZED ALGORITHM DESIGN , 2006 .

[3]  Niklaus Wirth,et al.  Algorithms and Data Structures , 1989, Lecture Notes in Computer Science.

[4]  Elena Prieto Rodríguez,et al.  SYSTEMATIC KERNELIZATION IN FPT ALGORITHM DESIGN , 2005 .

[5]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[6]  Karsten Weihe On the Differences between "Practical" and "Applied" , 2000, Algorithm Engineering.

[7]  Arie M. C. A. Koster,et al.  PREPROCESSING RULES FOR TRIANGULATION OF PROBABILISTIC NETWORKS * , 2005, Comput. Intell..

[8]  Michael R. Fellows,et al.  Linear Kernels in Linear Time, or How to Save k Colors in O(n2) Steps , 2004, WG.

[9]  Michael R. Fellows,et al.  Greedy Localization, Iterative Compression, Modeled Crown Reductions: New FPT Techniques, an Improved Algorithm for Set Splitting, and a Novel 2k Kernelization for Vertex Cover , 2004, IWPEC.

[10]  Michael J. Pelsmajer,et al.  Parameterized Algorithms for Feedback Vertex Set , 2004, IWPEC.

[11]  Giuseppe Cattaneo,et al.  Algorithm engineering , 1999, CSUR.

[12]  Jiong Guo,et al.  Algorithm design techniques for parameterized graph modification problems , 2006, Ausgezeichnete Informatikdissertationen.

[13]  R. Battiti,et al.  Covering Trains by Stations or the Power of Data Reduction , 1998 .

[14]  Saket Saurabh,et al.  Faster Fixed Parameter Tractable Algorithms for Undirected Feedback Vertex Set , 2002, ISAAC.

[15]  Daniel Lokshtanov,et al.  Fixed Parameter Set Splitting, Linear Kernel and Improved Running Time , 2005, ACiD.

[16]  Michael R. Fellows,et al.  Fixed Parameter Tractability and Completeness , 1992, Complexity Theory: Current Research.

[17]  Piotr Berman,et al.  A 2-Approximation Algorithm for the Undirected Feedback Vertex Set Problem , 1999, SIAM J. Discret. Math..

[18]  Panos M. Pardalos,et al.  Feedback Set Problems , 1999, Handbook of Combinatorial Optimization.

[19]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, COCOON.

[20]  Michael R. Fellows,et al.  An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem , 2005, Theory of Computing Systems.

[21]  Hans L. Bodlaender On Disjoint Cycles , 1994, Int. J. Found. Comput. Sci..

[22]  Saket Saurabh,et al.  Faster algorithms for feedback vertex set , 2005, Electron. Notes Discret. Math..

[23]  Reuven Bar-Yehuda,et al.  Randomized Algorithms for the Loop Cutset Problem , 2000, J. Artif. Intell. Res..

[24]  Hans L. Bodlaender,et al.  On Disjoint Cycles , 1991, Int. J. Found. Comput. Sci..

[25]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[26]  Leslie E. Trotter,et al.  Vertex packings: Structural properties and algorithms , 1975, Math. Program..

[27]  Robin Milner,et al.  On Observing Nondeterminism and Concurrency , 1980, ICALP.

[28]  Michael A. Langston,et al.  Parameterized and Exact Computation, Second International Workshop, IWPEC 2006, Zürich, Switzerland, September 13-15, 2006, Proceedings , 2006, IWPEC.

[29]  P. Pardalos,et al.  Handbook of Combinatorial Optimization , 1998 .

[30]  Rolf Niedermeier,et al.  Polynomial-time data reduction for dominating set , 2002, JACM.

[31]  Rolf Niedermeier,et al.  Improved Fixed-Parameter Algorithms for Two Feedback Set Problems , 2005, WADS.

[32]  Reuven Bar-Yehuda,et al.  Random Algorithms for the Loop Cutset Problem , 1999, UAI.

[33]  Jörg Flum,et al.  Bounded fixed-parameter tractability and log2n nondeterministic bits , 2004, J. Comput. Syst. Sci..

[34]  Jörg Flum,et al.  Parameterized Complexity Theory , 2006, Texts in Theoretical Computer Science. An EATCS Series.

[35]  Jörg Flum,et al.  Bounded Fixed-Parameter Tractability and log2n Nondeterministic Bits , 2004, ICALP.

[36]  Mark Weyer Bounded Fixed-Parameter Tractability: The Case 2poly(k) , 2004, IWPEC.

[37]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .