Cantilever dynamics and quality factor control in AC mode AFM height measurements.

We show that inconsistent-imaging dynamics, in which the cantilever oscillates in the attractive regime on substrate background but in the repulsive regime on sample, leads to artifacts in apparent height in AC mode Atomic force microscopy. Active Q control can be used to effectively tune the imaging dynamics. Increased effective Q promotes the attractive regime, improves imaging sensitivity, and results in less invasive imaging of soft biological molecules.

[1]  Y. Sugawara,et al.  Identification of B-Form DNA in an Ultrahigh Vacuum by Noncontact-Mode Atomic Force Microscopy , 2000 .

[2]  Harald Fuchs,et al.  Analysis of the interaction mechanisms in dynamic mode SFM by means of experimental data and computer simulation , 1998 .

[3]  Ricardo Garcia,et al.  Attractive and repulsive tip-sample interaction regimes in tapping-mode atomic force microscopy , 1999 .

[4]  Javier Tamayo,et al.  Active quality factor control in liquids for force spectroscopy , 2000 .

[5]  Charles M. Lieber,et al.  Single-Walled Carbon Nanotube AFM Probes: Optimal Imaging Resolution of Nanoclusters and Biomolecules in Ambient and Fluid Environments , 2004 .

[6]  Krueger,et al.  Cantilever dynamics in quasinoncontact force microscopy: Spectroscopic aspects. , 1996, Physical review. B, Condensed matter.

[7]  Charles M. Lieber,et al.  Structural and functional imaging with carbon nanotube AFM probes. , 2001, Progress in biophysics and molecular biology.

[8]  Paul K. Hansma,et al.  Imaging Globular and Filamentous Proteins in Physiological Buffer Solutions with Tapping Mode Atomic Force Microscopy , 1995 .

[9]  Alfredo Franco-Obregón,et al.  Detailed analysis of forces influencing lateral resolution for Q-control and tapping mode , 2001 .

[10]  Todd Sulchek,et al.  High-speed tapping mode imaging with active Q control for atomic force microscopy , 2000 .

[11]  M. Miles,et al.  High-Q dynamic force microscopy in liquid and its application to living cells. , 2001, Biophysical journal.

[12]  Á. S. Paulo,et al.  High-resolution imaging of antibodies by tapping-mode atomic force microscopy: attractive and repulsive tip-sample interaction regimes. , 2000, Biophysical journal.

[13]  Andrew G. Glen,et al.  APPL , 2001 .

[14]  Javier Tamayo,et al.  Piconewton regime dynamic force microscopy in liquid , 2000 .

[15]  Harald Fuchs,et al.  Basic properties of dynamic force spectroscopy with the scanning force microscope in experiment and simulation , 1996 .

[16]  D. Keller,et al.  Scanning force microscopy under aqueous solutions. , 1997, Current opinion in structural biology.

[17]  H. Hansma,et al.  Probing biopolymers with the atomic force microscope: A review , 2000, Journal of biomaterials science. Polymer edition.

[18]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[19]  Jerome Mertz,et al.  Regulation of a microcantilever response by force feedback , 1993 .

[20]  Todd Sulchek,et al.  Characterization and optimization of scan speed for tapping-mode atomic force microscopy , 2002 .

[21]  W. Godwin Article in Press , 2000 .

[22]  P. Hansma,et al.  Noncontact force microscopy in liquids , 1993 .

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  A M Baró,et al.  DNA height in scanning force microscopy. , 2003, Ultramicroscopy.

[25]  H. Güntherodt,et al.  Dynamic force microscopy in liquids , 1994 .

[26]  Zoltan L. Horvath,et al.  Dynamical properties of the Q-controlled atomic force microscope , 2004 .

[27]  C. Bustamante,et al.  Visualizing protein-nucleic acid interactions on a large scale with the scanning force microscope. , 1996, Annual review of biophysics and biomolecular structure.

[28]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .

[29]  Ricardo Garcia,et al.  Theory of Q control in atomic force microscopy , 2003 .

[30]  C. L. Cheung,et al.  Structural biology with carbon nanotube AFM probes. , 2000, Chemistry & biology.