Laser‐based in situ techniques: Novel methods for generating extreme conditions in TEM samples

The dynamic transmission electron microscope (DTEM) is introduced as a novel tool for in situ processing of materials. Examples of various types of dynamic studies outline the advantages and differences of laser‐based heating in the DTEM in comparison to conventional (resistive) heating in situ TEM methods. We demonstrate various unique capabilities of the drive laser, namely, in situ processing of nanoscale materials, rapid and high temperature phase transformations, and controlled thermal activation of materials. These experiments would otherwise be impossible without the use of the DTEM drive laser. Thus, the potential of the DTEM as a new technique to process and characterize the growth of a myriad of micro and nanostructures is demonstrated. Microsc. Res. Tech., 2009. Published 2009 Wiley‐Liss, Inc.

[1]  W. King,et al.  Rapid phase transformation kinetics on a nanoscale: Studies of the α → β transformation in pure, nanocrystalline Ti using the nanosecond dynamic transmission electron microscope , 2007 .

[2]  W. King,et al.  Ultrafast Imaging of Materials: Exploring the Gap of Space and Time , 2006 .

[3]  J. Colvin,et al.  Nanosecond time resolved electron diffraction studies of the α→β in pure Ti thin films using the dynamic transmission electron microscope (DTEM) , 2006 .

[4]  S. Kodambaka,et al.  Control of Si nanowire growth by oxygen. , 2006, Nano letters.

[5]  W. King,et al.  Ultrafast electron microscopy in materials science, biology, and chemistry , 2005 .

[6]  V. Lobastov,et al.  Four-dimensional ultrafast electron microscopy. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[7]  A. Zewail Diffraction, crystallography and microscopy beyond three dimensions: structural dynamics in space and time , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[8]  B. L. Weeks,et al.  A distributed activation energy model of thermodynamically inhibited nucleation and growth reactions and its application to the β-δ phase transition of HMX , 2004 .

[9]  D. Kim,et al.  Morphology of Si nanowires fabricated by laser ablation using gold catalysts , 2004 .

[10]  L. J. Thompson,et al.  In-Situ HREM Studies of Grain Boundary Migration , 2004 .

[11]  O. Bostanjoglo,et al.  High-speed transmission electron microscope , 2003 .

[12]  Joshua E. Goldberger,et al.  Watching GaN Nanowires Grow , 2003 .

[13]  A. Datye Electron microscopy of catalysts: recent achievements and future prospects , 2003 .

[14]  Pratibha L. Gai,et al.  Developments in in situ Environmental Cell High-Resolution Electron Microscopy and Applications to Catalysis , 2002 .

[15]  L. Smilowitz,et al.  The β-δ phase transition in the energetic nitramine octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: Thermodynamics , 2002 .

[16]  Robert A. Street,et al.  Amorphous silicon thin-film transistors and arrays fabricated by jet printing , 2002 .

[17]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[18]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[19]  Shuichi Uchikoga,et al.  Low temperature poly-Si TFT-LCD by excimer laser anneal , 2001 .

[20]  Zhong Lin Wang,et al.  Direct synthesis of silicon nanowires, silica nanospheres, and wire-like nanosphere agglomerates , 2000 .

[21]  R. K. Sander,et al.  Dynamic Measurement of the HMX {beta} -{delta} Phase Transition by Second Harmonic Generation , 1999 .

[22]  Ning Wang,et al.  NUCLEATION AND GROWTH OF SI NANOWIRES FROM SILICON OXIDE , 1998 .

[23]  Renu Sharma,et al.  Development of a TEM to study in situ structural and chemical changes at an atomic level during gas‐solid interactions at elevated temperatures , 1998, Microscopy research and technique.

[24]  Jackson Ho,et al.  LASER PROCESSING OF POLYSILICON THIN-FILM TRANSISTORS : GRAIN GROWTH AND DEVICE FABRICATION , 1998 .

[25]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[26]  O. Bostanjoglo,et al.  PULSED PHOTOELECTRON MICROSCOPE FOR IMAGING LASER-INDUCED NANOSECOND PROCESSES , 1997 .

[27]  O. Bostanjoglo,et al.  Hydrodynamic instabilities in laser pulse‐produced melts of metal films , 1996 .

[28]  S. D. Brotherton Polycrystalline silicon thin film transistors , 1995 .

[29]  O. Bostanjoglo,et al.  Ablation of metal films by picosecond laser pulses imaged with high‐speed electron microscopy , 1994 .

[30]  R. Tornow,et al.  High-speed electron microscopy of laser-induced vaporization of thin films , 1991 .

[31]  R. J. Arsenault,et al.  Anin situ HVEM study of dislocation generation at Al/SiC interfaces in metal matrix composites , 1986 .

[32]  David J. Smith,et al.  Imaging of atomic clouds outside the surfaces of gold crystals by electron microscopy , 1985, Nature.

[33]  L. Wallenberg,et al.  On the crystal structure of small gold crystals and large gold clusters , 1985 .

[34]  J. Martín,et al.  Microstructure of aluminium during creep at intermediate temperatures—III. The rate controlling process , 1983 .

[35]  D. Caillard,et al.  Microstructure of aluminium during creep at intermediate temperature—II. In situ study of subboundary properties , 1982 .

[36]  R. Sinclair,et al.  Atomic motion on the surface of a cadmium telluride single crystal , 1981, Nature.

[37]  C. Rae On the movement of grain boundary dislocations in recrystallizing interfaces , 1981 .

[38]  D. A. Smith On the Mechanisms of Grain Boundary Migration , 1980 .

[39]  R. E. Cobbledick,et al.  The crystal structure of the δ‐form of 1,3,5,7‐tetranitro‐1,3,5,7‐tetraazacyclooctane (δ‐HMX): erratum , 1974 .

[40]  R. Lagneborg,et al.  Correlation between observed creep behaviour from in-situ experiments in the HVEM and predicted behaviour from the recovery creep theory , 1973 .

[41]  H. Gleiter Theory of grain boundary migration rate , 1969 .

[42]  H. Gleiter The mechanism of grain boundary migration , 1969 .

[43]  D. Cromer,et al.  The crystal structure of α‐HMX and a refinement of the structure of β‐HMX , 1963 .

[44]  O. Bostanjoglo High-Speed Electron Microscopy , 2007 .

[45]  A. Rollett,et al.  In-Situ Electron Microscopy Studies of the Effect of Solute Segregation on Grain Boundary Anisotropy and Mobility in an Al-Zr Alloy , 2004 .

[46]  Xiangfeng Duan,et al.  Laser-Assisted Catalytic Growth of Single Crystal GaN Nanowires , 2000 .

[47]  David J. Smith,et al.  Atomic-resolution study of structural rearrangements in small platinum crystals , 1986 .

[48]  David J. Smith,et al.  Direct Imaging of Atomic Rearrangements on Extended Gold Surfaces , 1984 .

[49]  E. Butler,et al.  Dynamic experiments in the electron microscope , 1981 .