Functional analyses of genes involved in the metabolism of ferulic acid in Pseudomonas putida KT2440

[1]  H. Schlegel,et al.  Ein Submersverfahren zur Kultur wasserstoffoxydierender Bakterien: Wachstumsphysiologische Untersuchungen , 2004, Archiv für Mikrobiologie.

[2]  E. Record,et al.  A biotechnological process involving filamentous fungi to produce natural crystalline vanillin from maize bran , 2002, Applied biochemistry and biotechnology.

[3]  A. Steinbüchel,et al.  Identification of Amycolatopsis sp. strain HR167 genes, involved in the bioconversion of ferulic acid to vanillin , 2000, Applied Microbiology and Biotechnology.

[4]  A. Voragen,et al.  Characterization of arabinose and ferulic acid rich pectic polysaccharides and hemicelluloses from sugar beet pulp. , 2000, Carbohydrate research.

[5]  A. Steinbüchel,et al.  Identification and molecular characterization of the eugenol hydroxylase genes (ehyA/ehyB) of Pseudomonas sp. strain HR199 , 1999, Archives of Microbiology.

[6]  A. Steinbüchel,et al.  Biotransformation of eugenol to vanillin by a mutant of Pseudomonas sp. strain HR199 constructed by disruption of the vanillin dehydrogenase (vdh) gene , 1999, Applied Microbiology and Biotechnology.

[7]  A. Steinbüchel,et al.  Biochemical and Genetic Analyses of Ferulic Acid Catabolism in Pseudomonas sp. Strain HR199 , 1999, Applied and Environmental Microbiology.

[8]  A. Muheim,et al.  Towards a high-yield bioconversion of ferulic acid to vanillin , 1999, Applied Microbiology and Biotechnology.

[9]  A. Steinbüchel,et al.  Purification and Characterization of the Coniferyl Aldehyde Dehydrogenase from Pseudomonas sp. Strain HR199 and Molecular Characterization of the Gene , 1998, Journal of bacteriology.

[10]  Juan L. Ramos,et al.  Construction of an Efficient Biologically ContainedPseudomonas putida Strain and Its Survival in Outdoor Assays , 1998, Applied and Environmental Microbiology.

[11]  M. Gasson,et al.  Metabolism of Ferulic Acid to Vanillin , 1998, The Journal of Biological Chemistry.

[12]  M. Gasson,et al.  Metabolism of Ferulic Acid to Vanillin A BACTERIAL GENE OF THE ENOYL-SCoA HYDRATASE/ISOMERASE SUPERFAMILY ENCODES AN ENZYME FOR THE HYDRATION AND CLEAVAGE OF A HYDROXYCINNAMIC ACID SCoA THIOESTER* , 1998 .

[13]  Tadashi Ishii,et al.  Structure and functions of feruloylated polysaccharides , 1997 .

[14]  K. Timmis,et al.  Transcriptional control of the Pseudomonas TOL plasmid catabolic operons is achieved through an interplay of host factors and plasmid-encoded regulators. , 1997, Annual review of microbiology.

[15]  M. Asther,et al.  A two-step bioconversion process for vanillin production from ferulic acid combining Aspergillus niger and Pycnoporus cinnabarinus. , 1996, Journal of biotechnology.

[16]  A. Muheim,et al.  BIOTECHNOLOGICAL PRODUCTION OF VANILLIN , 1996 .

[17]  J. Ramos,et al.  Construction and behavior of biologically contained bacteria for environmental applications in bioremediation , 1995, Applied and environmental microbiology.

[18]  J. Ramos,et al.  Isolation and expansion of the catabolic potential of a Pseudomonas putida strain able to grow in the presence of high concentrations of aromatic hydrocarbons , 1995, Journal of bacteriology.

[19]  Eduardo Díaz,et al.  The Behavior of Bacteria Designed for Biodegradation , 1994, Bio/Technology.

[20]  G. Corrieu,et al.  Vanillin as a product of ferulic acid biotransformation by the white-rot fungus Pycnoporus cinnabarinus I-937: identification of metabolic pathways , 1994 .

[21]  K. Timmis,et al.  Expression and transfer of engineered catabolic pathways harbored by Pseudomonas spp. introduced into activated sludge microcosms , 1992, Applied and environmental microbiology.

[22]  J. Marais,et al.  Determination of alkali-soluble phenolic monomers in grasses after separation by thin-layer chromatography , 1992 .

[23]  R. Lindahl,et al.  Aldehyde dehydrogenases and their role in carcinogenesis. , 1992, Critical reviews in biochemistry and molecular biology.

[24]  W. Bullock XL1-Blue: a high efficiency plasmid transforming recA Escherichia coli strain with beta-galactosidase selection. , 1987 .

[25]  K. Timmis,et al.  Transcription of the TOL plasmid toluate catabolic pathway operon of Pseudomonas putida is determined by a pair of co‐ordinately and positively regulated overlapping promoters. , 1984, The EMBO journal.

[26]  D. Hanahan Studies on transformation of Escherichia coli with plasmids. , 1983, Journal of molecular biology.

[27]  A. Pühler,et al.  Vector Plasmids for in-Vivo and in-Vitro Manipulations of Gram-Negative Bacteria , 1983 .

[28]  A. Pühler,et al.  A Broad Host Range Mobilization System for In Vivo Genetic Engineering: Transposon Mutagenesis in Gram Negative Bacteria , 1983, Bio/Technology.

[29]  A. Pühler Molecular genetics of the bacteria-plant interaction , 1983 .

[30]  K. Timmis,et al.  Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[31]  B. Friedrich,et al.  Naturally occurring genetic transfer of hydrogen-oxidizing ability between strains of Alcaligenes eutrophus , 1981, Journal of bacteriology.

[32]  R. Crawford,et al.  Microbial degradation of lignin , 1979 .

[33]  F. Sanger,et al.  DNA sequencing with chain-terminating inhibitors. , 1977, Proceedings of the National Academy of Sciences of the United States of America.

[34]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[35]  H. Francksen,et al.  Potato Proteins: Genetic and Physiological Changes, Evaluated by One-and Two-dimensional PAA-Gel-techniques , 1973, Zeitschrift fur Naturforschung. Teil C: Biochemie, Biophysik, Biologie, Virologie.

[36]  M. Doudoroff,et al.  The aerobic pseudomonads: a taxonomic study. , 1966, Journal of general microbiology.