Nonparametric Background Generation

A novel background generation method based on non-parametric background model is presented for background subtraction. We introduce a new model, named as effect components description (ECD), to model the variation of the background, by which we can relate the best estimate of the background to the modes (local maxima) of the underlying distribution. Based on ECD, an effective background generation method, most reliable background mode (MRBM), is developed. The basic computational module of the method is an old pattern recognition procedure, the mean shift, which can be used recursively to find the nearest stationary point of the underlying density function. The advantages of this method are three-fold: first, backgrounds can be generated from image sequence with cluttered moving objects; second, backgrounds are very clear without blur effect; third, it is robust to noise and small vibration. Extensive experimental results illustrate its good performance

[1]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[2]  Terrance E. Boult,et al.  Into the woods: visual surveillance of noncooperative and camouflaged targets in complex outdoor settings , 2001, Proc. IEEE.

[3]  Wu Zhong International Trends of Pattern Recognition Research A Brief Introduction to the 18th International Conference on Pattern Recognition , 2006 .

[4]  P. KaewTrakulPong,et al.  An Improved Adaptive Background Mixture Model for Real-time Tracking with Shadow Detection , 2002 .

[5]  Philippe Van Ham,et al.  Tracking of migrating cells under phase-contrast video microscopy with combined mean-shift processes , 2005, IEEE Transactions on Medical Imaging.

[6]  Larry S. Davis,et al.  Efficient nonparametric kernel density estimation for real time computer vision , 2002 .

[7]  Alex Pentland,et al.  Pfinder: Real-Time Tracking of the Human Body , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Alexander G. Gray,et al.  Efficient exact k-NN and nonparametric classification in high dimensions , 2003, NIPS 2003.

[9]  Sergio A. Velastin,et al.  Automatic congestion detection system for underground platforms , 2001, Proceedings of 2001 International Symposium on Intelligent Multimedia, Video and Speech Processing. ISIMP 2001 (IEEE Cat. No.01EX489).

[10]  Larry S. Davis,et al.  W4: Real-Time Surveillance of People and Their Activities , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Yanxi Liu,et al.  Online selection of discriminative tracking features , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Larry S. Davis,et al.  Real-time foreground-background segmentation using codebook model , 2005, Real Time Imaging.

[13]  Dorin Comaniciu,et al.  Kernel-Based Object Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Peter Meer,et al.  Unsupervised segmentation based on robust estimation and color active contour models , 2005, IEEE Transactions on Information Technology in Biomedicine.

[15]  Irene Y. H. Gu,et al.  Colour image segmentation using adaptive mean shift filters , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[16]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[17]  Rita Cucchiara,et al.  Detecting Moving Objects, Ghosts, and Shadows in Video Streams , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  W. Eric L. Grimson,et al.  Learning Patterns of Activity Using Real-Time Tracking , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Hierarchical probabilistic models for video object segmentation and tracking , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[20]  Anton van den Hengel,et al.  Fast global kernel density mode seeking with application to localization and tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[21]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[22]  Larry D. Hostetler,et al.  The estimation of the gradient of a density function, with applications in pattern recognition , 1975, IEEE Trans. Inf. Theory.

[23]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Larry S. Davis,et al.  Efficient Kernel Density Estimation Using the Fast Gauss Transform with Applications to Color Modeling and Tracking , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Qi Tian,et al.  Foreground object detection in changing background based on color co-occurrence statistics , 2002, Sixth IEEE Workshop on Applications of Computer Vision, 2002. (WACV 2002). Proceedings..

[27]  Zaiming Li,et al.  Background clutter suppression and dim moving point targets detection using nonparametric method , 2002, IEEE 2002 International Conference on Communications, Circuits and Systems and West Sino Expositions.

[28]  Larry S. Davis,et al.  Efficient non-parametric adaptive color modeling using fast Gauss transform , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[29]  Andrew Blake,et al.  Statistical Background Modelling for Tracking with a Virtual Camera , 1995, BMVC.

[30]  Larry S. Davis,et al.  Non-parametric Model for Background Subtraction , 2000, ECCV.