Polynomial-time identification of robust network flows under uncertain arc failures

We propose Linear Programming (LP)-based solution methods for network flow problems subject to multiple uncertain arc failures, which allow finding robust optimal solutions in polynomial time under certain conditions. We justify this fact by proving that for the considered class of problems under uncertainty with linear loss functions, the number of entities in the corresponding LP formulations is polynomial with respect to the number of arcs in the network. The proposed formulation is efficient for sparse networks, as well as for time-critical networked systems, where quick and robust decisions play a crucial role.

[1]  Glyn A. Holton Value at Risk: Theory and Practice , 2003 .

[2]  Stan Uryasev,et al.  Conditional value-at-risk: optimization algorithms and applications , 2000, Proceedings of the IEEE/IAFE/INFORMS 2000 Conference on Computational Intelligence for Financial Engineering (CIFEr) (Cat. No.00TH8520).

[3]  R. Rockafellar,et al.  Optimization of conditional value-at risk , 2000 .

[4]  Melvyn Sim,et al.  Robust discrete optimization and network flows , 2003, Math. Program..

[5]  M. R. Rao,et al.  Maximal Flow in a Multi-Terminal Network with Any One Arc Subject to Failure , 1971 .

[6]  Dimitri P. Bertsekas,et al.  Network optimization : continuous and discrete models , 1998 .

[7]  Yash P. Aneja,et al.  Maximizing residual flow under an arc destruction , 2001, Networks.

[8]  Panos M. Pardalos,et al.  The wireless network jamming problem , 2007, J. Comb. Optim..

[9]  G. Casella,et al.  Statistical Inference , 2003, Encyclopedia of Social Network Analysis and Mining.

[10]  Tamar Frankel [The theory and the practice...]. , 2001, Tijdschrift voor diergeneeskunde.

[11]  Vidyadhar G. Kulkarni,et al.  Minimum Cost Routing on Stochastic Networks , 1990, Oper. Res..

[12]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[13]  Alexander Schrijver,et al.  On the history of the transportation and maximum flow problems , 2002, Math. Program..

[14]  George L. Nemhauser,et al.  A Dynamic Network Flow Problem with Uncertain Arc Capacities: Formulation and Problem Structure , 2000, Oper. Res..

[15]  D. Hunter Portfolio optimization with conditional value-at-risk objective and constraints , 2002 .

[16]  R. Rockafellar,et al.  Conditional Value-at-Risk for General Loss Distributions , 2001 .

[17]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[18]  David P. Morton,et al.  Stochastic Network Interdiction , 1998, Oper. Res..

[19]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[20]  Ravindra K. Ahuja,et al.  Network Flows: Theory, Algorithms, and Applications , 1993 .