Generalization of amygdala LTP and conditioned fear in the absence of presynaptic inhibition

Pavlovian fear conditioning, a simple form of associative learning, is thought to involve the induction of associative, NMDA receptor–dependent long-term potentiation (LTP) in the lateral amygdala. Using a combined genetic and electrophysiological approach, we show here that lack of a specific GABAB receptor subtype, GABAB(1a,2), unmasks a nonassociative, NMDA receptor–independent form of presynaptic LTP at cortico-amygdala afferents. Moreover, the level of presynaptic GABAB(1a,2) receptor activation, and hence the balance between associative and nonassociative forms of LTP, can be dynamically modulated by local inhibitory activity. At the behavioral level, genetic loss of GABAB(1a) results in a generalization of conditioned fear to nonconditioned stimuli. Our findings indicate that presynaptic inhibition through GABAB(1a,2) receptors serves as an activity-dependent constraint on the induction of homosynaptic plasticity, which may be important to prevent the generalization of conditioned fear.

[1]  D. Paré,et al.  Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(-). , 2000, Learning & memory.

[2]  M. Scanziani,et al.  Presynaptic inhibition in the hippocampus , 1993, Trends in Neurosciences.

[3]  D. Paré,et al.  Role of amygdala oscillations in the consolidation of emotional memories , 2004, Biological Psychiatry.

[4]  Joseph E LeDoux Emotion Circuits in the Brain , 2000 .

[5]  G. Collingridge,et al.  GABAB autoreceptors regulate the induction of LTP , 1991, Nature.

[6]  W. Zieglgänsberger,et al.  The endogenous cannabinoid system controls extinction of aversive memories , 2002, Nature.

[7]  Joseph E LeDoux,et al.  Stimulus generalization of fear responses: effects of auditory cortex lesions in a computational model and in rats. , 1997, Cerebral cortex.

[8]  E. Asprodini,et al.  Epileptogenesis reduces the sensitivity of presynaptic gamma-aminobutyric acidB receptors on glutamatergic afferents in the amygdala. , 1992, The Journal of pharmacology and experimental therapeutics.

[9]  H. Pape,et al.  Putative Cortical and Thalamic Inputs Elicit Convergent Excitation in a Population of GABAergic Interneurons of the Lateral Amygdala , 2000, The Journal of Neuroscience.

[10]  David Lodge,et al.  A Critical Role of a Facilitatory Presynaptic Kainate Receptor in Mossy Fiber LTP , 2001, Neuron.

[11]  M. McKERNAN,et al.  Fear conditioning induces a lasting potentiation of synaptic currents in vitro , 1997, Nature.

[12]  Dietmar Schmitz,et al.  Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation , 2003, Nature Neuroscience.

[13]  V. Meskenaite,et al.  GABAB‐receptor splice variants GB1a and GB1b in rat brain: developmental regulation, cellular distribution and extrasynaptic localization , 1999, The European journal of neuroscience.

[14]  D. Paré,et al.  Synaptic and synaptically activated intrinsic conductances underlie inhibitory potentials in cat lateral amygdaloid projection neurons in vivo. , 1997, Journal of neurophysiology.

[15]  M. Gassmann,et al.  Molecular structure and physiological functions of GABA(B) receptors. , 2004, Physiological reviews.

[16]  S. Satake,et al.  GABAB receptor-mediated presynaptic inhibition of glutamatergic and GABAergic transmission in the basolateral amygdala , 1999, Neuropharmacology.

[17]  Christian Lüscher,et al.  G Protein-Coupled Inwardly Rectifying K+ Channels (GIRKs) Mediate Postsynaptic but Not Presynaptic Transmitter Actions in Hippocampal Neurons , 1997, Neuron.

[18]  Matthew E. Larkum,et al.  The GABAB1b Isoform Mediates Long-Lasting Inhibition of Dendritic Ca2+ Spikes in Layer 5 Somatosensory Pyramidal Neurons , 2006, Neuron.

[19]  D. Lovinger,et al.  Retrograde Endocannabinoid Signaling in a Postsynaptic Neuron/Synaptic Bouton Preparation from Basolateral Amygdala , 2005, The Journal of Neuroscience.

[20]  Andreas Lüthi,et al.  Dendritic Spine Heterogeneity Determines Afferent-Specific Hebbian Plasticity in the Amygdala , 2005, Neuron.

[21]  Joseph E LeDoux,et al.  Heterosynaptic Long-Term Potentiation of Inhibitory Interneurons in the Lateral Amygdala , 2004, The Journal of Neuroscience.

[22]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[23]  M. Gassmann,et al.  Molecular Structure and Physiological Functions of GABAB Receptors , 2004 .

[24]  H. Pape,et al.  Generalisation of conditioned fear and its behavioural expression in mice , 2003, Behavioural Brain Research.

[25]  R F THOMPSON,et al.  Role of the cerebral cortex in stimulus generalization. , 1962, Journal of comparative and physiological psychology.

[26]  R. Shigemoto,et al.  Distinct localization of GABAB receptors relative to synaptic sites in the rat cerebellum and ventrobasal thalamus , 2002, The European journal of neuroscience.

[27]  M. Honer,et al.  γ-Aminobutyric Acid Type B Receptor Splice Variant Proteins GBR1a and GBR1b Are Both Associated with GBR2 in Situ and Display Differential Regional and Subcellular Distribution* , 1999, The Journal of Biological Chemistry.

[28]  Joseph E LeDoux,et al.  L-Type Voltage-Gated Calcium Channels Mediate NMDA-Independent Associative Long-Term Potentiation at Thalamic Input Synapses to the Amygdala , 1999, The Journal of Neuroscience.

[29]  E. Baldi,et al.  Footshock intensity and generalization in contextual and auditory-cued fear conditioning in the rat , 2004, Neurobiology of Learning and Memory.

[30]  Pankaj Sah,et al.  Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala , 1998, Nature.

[31]  T. Oertner,et al.  Differential Compartmentalization and Distinct Functions of GABAB Receptor Variants , 2006, Neuron.

[32]  W. Regehr,et al.  Mechanism and Kinetics of Heterosynaptic Depression at a Cerebellar Synapse , 1997, The Journal of Neuroscience.

[33]  J. Porter,et al.  Presynaptic GABAB receptors modulate thalamic excitation of inhibitory and excitatory neurons in the mouse barrel cortex. , 2004, Journal of neurophysiology.

[34]  R. North,et al.  Membrane properties and synaptic potentials of three types of neurone in rat lateral amygdala. , 1993, The Journal of physiology.

[35]  D. Kullmann,et al.  Presynaptic, extrasynaptic and axonal GABAA receptors in the CNS: where and why? , 2005, Progress in biophysics and molecular biology.

[36]  N. Bowery,et al.  GABAB receptor isoforms GBR1a and GBR1b, appear to be associated with pre‐ and post‐synaptic elements respectively in rat and human cerebellum , 1999, British journal of pharmacology.

[37]  D. Storm,et al.  The role of calmodulin as a signal integrator for synaptic plasticity , 2005, Nature Reviews Neuroscience.

[38]  J. Cryan,et al.  Don't worry 'B' happy!: a role for GABA(B) receptors in anxiety and depression. , 2005, Trends in pharmacological sciences.

[39]  Eric R Kandel,et al.  Postsynaptic Induction and PKA-Dependent Expression of LTP in the Lateral Amygdala , 1998, Neuron.

[40]  G. Quirk,et al.  Neuronal signalling of fear memory , 2004, Nature Reviews Neuroscience.

[41]  R. North,et al.  Opioid actions on neurons of rat lateral amygdala in vitro , 1993, Brain Research.

[42]  N. Weinberger Specific long-term memory traces in primary auditory cortex , 2004, Nature Reviews Neuroscience.

[43]  Joseph E LeDoux,et al.  GABAA and GABAB receptors differentially regulate synaptic transmission in the auditory thalamo‐amygdala pathway: An in vivo microiontophoretic study and a model , 1996, Synapse.

[44]  Neil Schneiderman,et al.  Involvement of cortical and thalamic auditory regions in retention of differential bradycardiac conditioning to acoustic conditioned stimuli in rabbits , 1987, Brain Research.

[45]  Y. Humeau,et al.  Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain , 2003, Nature.

[46]  R. Nicoll,et al.  Local and diffuse synaptic actions of GABA in the hippocampus , 1993, Neuron.

[47]  F. Mascagni,et al.  Immunocytochemical localization of GABABR1 receptor subunits in the basolateral amygdala , 2004, Brain Research.

[48]  Joseph E LeDoux,et al.  Postsynaptic Receptor Trafficking Underlying a Form of Associative Learning , 2005, Science.

[49]  Y. Humeau,et al.  Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition , 2003, Nature Neuroscience.