Natural Generalizations of Threshold Secret Sharing
暂无分享,去创建一个
[1] B. Segre. Curve razionali normali ek-archi negli spazi finiti , 1955 .
[2] Jan De Beule,et al. On sets of vectors of a finite vector space in which every subset of basis size is a basis II , 2012, Des. Codes Cryptogr..
[3] Germán Sáez,et al. New Results on Multipartite Access Structures , 2006, IACR Cryptol. ePrint Arch..
[4] László Csirmaz,et al. The Size of a Share Must Be Large , 1994, Journal of Cryptology.
[5] Carles Padró,et al. Ideal Hierarchical Secret Sharing Schemes , 2010, IEEE Transactions on Information Theory.
[6] Tamir Tassa,et al. Hierarchical Threshold Secret Sharing , 2004, Journal of Cryptology.
[7] Takayuki Hibi,et al. Discrete Polymatroids , 2002 .
[8] Adi Shamir,et al. How to share a secret , 1979, CACM.
[9] Alexander Schrijver,et al. Combinatorial optimization. Polyhedra and efficiency. , 2003 .
[10] Carles Padró,et al. On the optimization of bipartite secret sharing schemes , 2012, Des. Codes Cryptogr..
[11] Gustavus J. Simmons,et al. How to (Really) Share a Secret , 1988, CRYPTO.
[12] G. R. BLAKLEY. Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).
[13] Carles Padró,et al. Ideal Multipartite Secret Sharing Schemes , 2007, Journal of Cryptology.
[14] Keith M. Martin,et al. Geometric secret sharing schemes and their duals , 1994, Des. Codes Cryptogr..
[15] Rita Vincenti,et al. Three-level secret sharing schemes from the twisted cubic , 2010, Discret. Math..
[16] William J. Cook,et al. Combinatorial optimization , 1997 .
[17] Nira Dyn,et al. Multipartite Secret Sharing by Bivariate Interpolation , 2008, Journal of Cryptology.
[18] Simeon Ball,et al. On sets of vectors of a finite vector space in which every subset of basis size is a basis II , 2012, Designs, Codes and Cryptography.
[19] Michael J. Collins. A Note on Ideal Tripartite Access Structures , 2002, IACR Cryptol. ePrint Arch..
[20] James L. Massey,et al. Minimal Codewords and Secret Sharing , 1999 .
[21] Ernest F. Brickell,et al. Some Ideal Secret Sharing Schemes , 1990, EUROCRYPT.
[22] J. Massey. Some Applications of Coding Theory in Cryptography , 1999 .
[23] B. V. Raghavendra Rao,et al. On the Complexity of Matroid Isomorphism Problems , 2009, CSR.
[24] V. Shoup. New algorithms for finding irreducible polynomials over finite fields , 1990 .
[25] Ernest F. Brickell,et al. On the classification of ideal secret sharing schemes , 1989, Journal of Cryptology.
[26] James W. P. Hirschfeld,et al. The Main Conjecture for MDS Codes , 1995, IMACC.
[27] Suresh C. Kothari,et al. Generalized Linear Threshold Scheme , 1985, CRYPTO.
[28] Carles Padró,et al. Secret sharing schemes with bipartite access structure , 2000, IEEE Trans. Inf. Theory.
[29] Ehud D. Karnin,et al. On secret sharing systems , 1983, IEEE Trans. Inf. Theory.
[30] Siaw-Lynn Ng. Ideal secret sharing schemes with multipartite access structures , 2006 .
[31] Albrecht Beutelspacher,et al. On 2-level secret sharing , 1993, Des. Codes Cryptogr..
[32] Tamir Tassa,et al. Characterizing Ideal Weighted Threshold Secret Sharing , 2008, SIAM J. Discret. Math..
[33] Carles Padró,et al. On secret sharing schemes, matroids and polymatroids , 2006, J. Math. Cryptol..
[34] Douglas R. Stinson,et al. An explication of secret sharing schemes , 1992, Des. Codes Cryptogr..
[35] Carles Padró,et al. On the Representability of the Biuniform Matroid , 2013, SIAM J. Discret. Math..
[36] Amos Beimel,et al. Secret-Sharing Schemes: A Survey , 2011, IWCC.
[37] Josh Benaloh,et al. Generalized Secret Sharing and Monotone Functions , 1990, CRYPTO.