Continuum Models of Carbon Nanotube-Based Composites Using the Boundary Element Method

This paper presents some recent advances in the boundary element method (BEM) for the analysis of carbon nanotube (CNT)-based composites. Carbon nanotubes, formed conceptually by rolling thin graphite sheets, have been found to be extremely stiff, strong and resilient, and therefore may be ideal for reinforcing composite materials. However, the thin cylindrical shape of the CNTs presents great challenges to any computational method when these thin shell-like CNTs are embedded in a matrix material. The BEM, based on exactly the same boundary integral equation (BIE) formulation developed by Rizzo some forty years ago, turns out to be an ideal numerical tool for such simulations using continuum mechanics. Modeling issues regarding model selections, representative volume elements, interface conditions and others, will be discussed in this paper. Methods for dealing with nearly-singular integrals which arise in the BEM analysis of thin or layered materials and are crucial for the accuracy of such analyses will be reviewed. Numerical examples using the BEM and compared with the finite element method (FEM) will be presented to demonstrate the efficiency and accuracy of the BEM in analyzing the CNT-reinforced composites.

[1]  Charles M. Lieber,et al.  Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes , 1997 .

[2]  M. Balkanski,et al.  ELASTIC PROPERTIES OF SINGLE-WALLED CARBON NANOTUBES , 2000 .

[3]  Palghat S. Ramesh,et al.  DYNAMIC ANALYSIS OF MICRO‐ELECTRO‐MECHANICAL SYSTEMS , 1996 .

[4]  J. Achenbach,et al.  Effect of Fiber-Matrix Interphase Defects on Microlevel Stress States at Neighboring Fibers , 1991 .

[5]  Wing Kam Liu,et al.  Mechanics of C 60 in Nanotubes , 2001 .

[6]  Linda S. Schadler,et al.  LOAD TRANSFER IN CARBON NANOTUBE EPOXY COMPOSITES , 1998 .

[7]  Yijun Liu,et al.  Analysis of thin piezoelectric solids by the boundary element method , 2002 .

[8]  Yijun Liu ANALYSIS OF SHELL-LIKE STRUCTURES BY THE BOUNDARY ELEMENT METHOD BASED ON 3-D ELASTICITY: FORMULATION AND VERIFICATION , 1998 .

[9]  Subrata Mukherjee,et al.  Simulation methods for micro-electro-mechanical structures (MEMS) with application to a microtweezer , 1995 .

[10]  Dong Qian,et al.  Mechanics of C60 in nanotubes , 2001 .

[11]  J. Kang,et al.  Mechanical deformation study of copper nanowire using atomistic simulation , 2001 .

[12]  Reshef Tenne,et al.  Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix , 1998 .

[13]  Yijun Liu,et al.  Square representative volume elements for evaluating the effective material properties of carbon nanotube-based composites , 2004 .

[14]  Tungyang Chen,et al.  Boundary integral formulations for three-dimensional anisotropic piezoelectric solids , 1995 .

[15]  Jan Drewes Achenbach,et al.  Effect of interfacial zone on mechanical behavior and failure of fiber-reinforced composites , 1989 .

[16]  Robert E. Tuzun,et al.  Continuum methods of mechanics as a simplified approach to structural engineering of nanostructures , 1998 .

[17]  F. Rizzo,et al.  An integral equation formulation of three dimensional anisotropic elastostatic boundary value problems , 1973 .

[18]  Nan Xu,et al.  Modeling of interface cracks in fiber-reinforced composites with the presence of interphases using the boundary element method , 2000 .

[19]  P. Avouris,et al.  Mechanical Properties of Carbon Nanotubes , 2001 .

[20]  Jianping Lu,et al.  Elastic properties of single and multilayered nanotubes , 1997 .

[21]  C. Q. Ru,et al.  Axially compressed buckling of a doublewalled carbon nanotube embedded in an elastic medium , 2001 .

[22]  Subrata Mukherjee,et al.  The boundary node method for three‐dimensional linear elasticity , 1999 .

[23]  T. Cruse,et al.  Efficient implementation of anisotropic three dimensional boundary-integral equation stress analysis , 1978 .

[24]  Sunil N. Gulrajani,et al.  Sensitivities and optimal design of hexagonal array fiber composites with respect to interphase properties , 1993 .

[25]  C. Q. Ru,et al.  Column buckling of multiwalled carbon nanotubes with interlayer radial displacements , 2000 .

[26]  F. J. Rizzo,et al.  Nearly Singular and Hypersingular Integrals in the Boundary Element Method , 1970 .

[27]  G. Iannaccone,et al.  Status and perspectives of nanoscale device modelling , 2001 .

[28]  F. Rizzo,et al.  Boundary element analysis for composite materials and a library of Green's functions , 1998 .

[29]  S. Mukherjee,et al.  THE BOUNDARY NODE METHOD FOR POTENTIAL PROBLEMS , 1997 .

[30]  T. Chou,et al.  Advances in the science and technology of carbon nanotubes and their composites: a review , 2001 .

[31]  Jaroslav Mackerle,et al.  Finite element and boundary element library for composites—a bibliography (1991–1993) , 1994 .

[32]  Frank J. Rizzo,et al.  A Method for Stress Determination in Plane Anisotropic Elastic Bodies , 1970 .

[33]  Frank J. Rizzo,et al.  An advanced boundary integral equation method for three‐dimensional thermoelasticity , 1977 .

[34]  Yijun Liu,et al.  Thermal Stress Analysis of Multi-layer Thin Films and Coatings by an Advanced Boundary Element Method , 2001 .

[35]  William A. Goddard,et al.  Energetics, structure, mechanical and vibrational properties of single-walled carbon nanotubes , 1998 .

[36]  Luc T. Wille,et al.  Elastic properties of single-walled carbon nanotubes in compression , 1997 .

[37]  Yijun Liu,et al.  Scattering of elastic waves from thin shapes in three dimensions using the composite boundary integral equation formulation , 1997 .

[38]  An Integral-Equation Formulation for Anisotropic Elastostatics , 1996 .

[39]  E. Pan A BEM analysis of fracture mechanics in 2D anisotropic piezoelectric solids , 1999 .

[40]  S. Iijima Helical microtubules of graphitic carbon , 1991, Nature.

[41]  Dong Qian,et al.  Mechanics of carbon nanotubes , 2002 .

[42]  S. Nemat-Nasser,et al.  Micromechanics: Overall Properties of Heterogeneous Materials , 1993 .

[43]  Martin Bachtold,et al.  Analysis of Realistic Large MEMS Devices , 2000 .

[44]  Leonard J. Gray,et al.  Evaluation of the anisotropic Green's function and its derivatives , 1998 .

[45]  Elizabeth C. Dickey,et al.  Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites , 2000 .

[46]  Naoshi Nishimura,et al.  A fast multipole boundary integral equation method for crack problems in 3D , 1999 .

[47]  P. Bernier,et al.  Elastic and mechanical properties of carbon nanotubes , 1999 .

[48]  F. J. Rizzo,et al.  A formulation and solution procedure for the general non-homogeneous elastic inclusion problem , 1968 .

[49]  Yijun Liu,et al.  On the conventional boundary integral equation formulation for piezoelectric solids with defects or of thin shapes , 2001 .

[50]  Yijun Liu,et al.  Interfacial stress analysis for multi-coating systems using an advanced boundary element method , 2000 .

[51]  Subrata Mukherjee,et al.  Design and Fabrication of an Electrostatic Variable Gap Comb Drive in Micro-Electro-Mechanical Systems , 2000 .

[52]  Otto Zhou,et al.  Deformation of carbon nanotubes in nanotube–polymer composites , 1999 .

[53]  Yijun Liu,et al.  Analysis of two-dimensional thin structures (from micro- to nano-scales) using the boundary element method , 1998 .

[54]  R. V. D. Geijn,et al.  A fast solution method for three‐dimensional many‐particle problems of linear elasticity , 1998 .

[55]  J. S. Lee,et al.  A boundary integral formulation and 2D fundamental solution for piezoelastic media , 1994 .

[56]  Rodney S. Ruoff,et al.  Mechanical and thermal properties of carbon nanotubes , 1995 .

[57]  T. Farris,et al.  Three-Dimensional Piezoelectric Boundary Element Method , 1998 .

[58]  Sanjay Govindjee,et al.  On the use of continuum mechanics to estimate the properties of nanotubes , 1999 .

[59]  J. Fattebert,et al.  Mechanical properties, defects and electronic behavior of carbon nanotubes , 2000 .

[60]  Frank J. Rizzo,et al.  A method of solution for certain problems of transient heat conduction , 1970 .

[61]  C. Ru,et al.  Elastic buckling of single-walled carbon nanotube ropes under high pressure , 2000 .

[62]  Madhu Menon,et al.  Computational nanotechnology with carbon nanotubes and fullerenes , 2001, Comput. Sci. Eng..

[63]  Subrata Mukherjee,et al.  Optimal Shape Design of Three-Dimensional MEMS with Applications to Electrostatic Comb Drives , 1998 .

[64]  F. J. Rizzo,et al.  An Application of the Correspondence Principle of Linear Viscoelasticity Theory , 1971 .

[65]  Erik Dujardin,et al.  Young's modulus of single-walled nanotubes , 1998 .

[66]  T. Halicioǧlu,et al.  Stress Calculations for Carbon Nanotubes , 1998 .

[67]  Lothar Gaul,et al.  A boundary element method for transient piezoelectric analysis , 2000 .

[68]  J. E. Gómez,et al.  A multipole direct and indirect BEM for 2D cavity flow at low Reynolds number , 1997 .

[69]  Y. Liu,et al.  Modeling of Interphases in Fiber-Reinforced Composites Under Transverse Loading Using the Boundary Element Method , 2000 .

[70]  H. Ding,et al.  A boundary integral formulation and 2D fundamental solutions for piezoelectric media , 1998 .

[71]  T. Ebbesen,et al.  Exceptionally high Young's modulus observed for individual carbon nanotubes , 1996, Nature.

[72]  S. White,et al.  Stress analysis of fiber-reinforced composite materials , 1997 .

[73]  A. Globus,et al.  Molecular dynamics simulations of carbon nanotube-based gears , 1997 .

[74]  Frank J. Rizzo,et al.  An integral equation approach to boundary value problems of classical elastostatics , 1967 .

[75]  T. Cruse,et al.  A direct formulation and numerical solution of the general transient elastodynamic problem. II , 1968 .

[76]  John Berger,et al.  Boundary integral equation formulation for Interface cracks in anisotropic materials , 1997 .

[77]  Yijun Liu,et al.  Multiple-cell modeling of fiber-reinforced composites with the presence of interphases using the boundary element method , 2001 .

[78]  Bingqing Wei,et al.  Study on poly(methyl methacrylate)/carbon nanotube composites , 1999 .

[79]  Yijun Liu,et al.  Evaluations of the effective material properties of carbon nanotube-based composites using a nanoscale representative volume element , 2003 .

[80]  Donald W. Brenner,et al.  Mechanical properties of nanotubule fibers and composites determined from theoretical calculations and simulations , 1998 .

[81]  S. Mukherjee On Boundary Integral Equations for Cracked and for thin Bodies , 2001 .

[82]  Jong S. Lee Boundary element method for electroelastic interaction in piezoceramics , 1995 .

[83]  W. Goddard,et al.  Energetics, Structure, Mechanical and Vibrational Properties of Single Walled Carbon Nano Tubes (SWNT) , 1998 .