Rotating Type Ia SN Progenitors: Explosion and Light Curves

Based on the rigidly rotating progenitor models found to be able to grow up to the canonical Chandrasekhar mass limit and beyond, and undergo a thermonuclear explosion, we compute the explosions, detailed nucleosynthesis, and corresponding light curves by means of a one-dimensional hydrodynamic code. Our results show that the inclusion of rotation in the evolution of the progenitors determines, in a natural way, a variation in the explosive physical conditions, mainly different explosive ignition densities (2.08 × 109 to 3.34 × 109 g cm-3), total masses (1.39-1.48 M☉), and binding energies (-5.3 × 1050 to -6.6 × 1050 ergs). Such a spread is related to the rotational velocity at the explosive carbon ignition stage and to the efficiency of angular momentum loss during the last part of the progenitor evolution. We explore the final outcome in the framework of the delayed detonation explosion models by fixing the value of the transition density and by considering two different braking efficiencies. Within the explored parameter space, the bolometric light curves at maximum show differences of ~0.1 mag due to the different amount of 56Ni synthesized during the explosion. Although rigid rotation cannot be considered responsible for the diversities in the observational properties of SNe Ia, it could explain the dispersion in the magnitude at maximum of standardized events. We also find that those models with high ignition densities produce a central remnant in which most of the neutron-rich species synthesized during the explosion are trapped.

[1]  S. Woosley,et al.  Carbon Ignition in Type Ia Supernovae. II. A Three-dimensional Numerical Model , 2005, astro-ph/0509367.

[2]  N. Langer,et al.  On the evolution of rapidly rotating massive white dwarfs towards supernovae or collapses , 2005, astro-ph/0502133.

[3]  E. Oran,et al.  Three-dimensional Delayed-Detonation Model of Type Ia Supernovae , 2004, astro-ph/0409598.

[4]  D. García-Senz,et al.  Type Ia Supernova models arising from different distributions of igniting points , 2004, astro-ph/0409480.

[5]  W. Hillebrandt,et al.  Full-star type Ia supernova explosion models , 2004, astro-ph/0409286.

[6]  K. Nomoto,et al.  Signature of Electron Capture in Iron-rich Ejecta of SN 2003du , 2004, astro-ph/0409185.

[7]  Astrophysics,et al.  Type Ia Supernova Explosion: Gravitationally Confined Detonation , 2004, astro-ph/0405163.

[8]  N. Langer,et al.  Presupernova evolution of accreting white dwarfs with rotation , 2004, astro-ph/0402287.

[9]  K. Nomoto,et al.  Off-Center Carbon Ignition in Rapidly Rotating, Accreting Carbon-Oxygen White Dwarfs , 2004, astro-ph/0401141.

[10]  A. Tornambe',et al.  Carbon-Oxygen White Dwarf Accreting CO-Rich Matter. II. Self-Regulating Accretion Process up to the Explosive Stage , 2003 .

[11]  I. Hachisu,et al.  Evolution of Rotating Accreting White Dwarfs and the Diversity of Type Ia Supernovae , 2003, astro-ph/0309433.

[12]  C. Badenes,et al.  Thermal X-Ray Emission from Shocked Ejecta in Type Ia Supernova Remnants: Prospects for Explosion Mechanism Identification , 2003, astro-ph/0304552.

[13]  M. Douspis,et al.  An alternative to the cosmological 'concordance model' , 2003, astro-ph/0304237.

[14]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[15]  A. Chtchelkanova,et al.  Supernovae : Simulations of the Deflagration Stage and Their Implications , 2018 .

[16]  A. Tornambe',et al.  Carbon-Oxygen White Dwarfs Accreting CO-rich Matter. I. A Comparison between Rotating and Nonrotating Models , 2002, astro-ph/0210624.

[17]  F. Ma Letter: Spin–Down Power in Astrophysics , 2002, astro-ph/0202040.

[18]  S. Sakai,et al.  Infrared Spectra of the Subluminous Type Ia Supernova SN 1999by , 2001, astro-ph/0112126.

[19]  R. Ellis,et al.  A measurement of the cosmological mass density from clustering in the 2dF Galaxy Redshift Survey , 2001, Nature.

[20]  M. Hamuy,et al.  On the Relation between Peak Luminosity and Parent Population of Type Ia Supernovae: A New Tool for Probing the Ages of Distant Galaxies , 2000, astro-ph/0006047.

[21]  A. Tornambe',et al.  Hydrogen-Accreting Carbon-Oxygen White Dwarfs of Low Mass: Thermal and Chemical Behavior of Burning Shells , 2000, astro-ph/0003272.

[22]  K. Nomoto,et al.  The Role of Electron Captures in Chandrasekhar-Mass Models for Type Ia Supernovae , 2000, astro-ph/0001464.

[23]  Koichi Iwamoto,et al.  Nucleosynthesis in Chandrasekhar Mass Models for Type Ia Supernovae and Constraints on Progenitor Systems and Burning-Front Propagation , 1999 .

[24]  P. Hoeflich,et al.  Properties of Deflagration Fronts and Models for Type Ia Supernovae , 1999, astro-ph/9908204.

[25]  R. Schommer,et al.  The Reddening-Free Decline Rate Versus Luminosity Relationship for Type Ia Supernovae , 1999, astro-ph/9907052.

[26]  P. Nugent,et al.  Metallicity Effects in Non-LTE Model Atmospheres of Type Ia Supernovae , 1999, astro-ph/9906016.

[27]  I. Hook,et al.  Measurements of Ω and Λ from 42 High-Redshift Supernovae , 1998, astro-ph/9812133.

[28]  M. Phillips,et al.  The High-Z Supernova Search: Measuring Cosmic Deceleration and Global Curvature of the Universe Using Type Ia Supernovae , 1998, astro-ph/9805200.

[29]  K. Nomoto,et al.  Inward Propagation of Nuclear-burning Shells in Merging C-O and He White Dwarfs , 1998, astro-ph/9801084.

[30]  J. Spyromilio,et al.  Explosion Diagnostics of Type Ia Supernovae from Early Infrared Spectra , 1997, astro-ph/9709254.

[31]  Lifan Wang,et al.  Supernovae and Their Host Galaxies , 1997 .

[32]  S. Woosley Neutron-rich Nucleosynthesis in Carbon Deflagration Supernovae , 1997 .

[33]  A. Tornambe',et al.  On the Formation of Massive C-O White Dwarfs: the Lifting Effect of Rotation , 1996 .

[34]  J. Wheeler,et al.  Deflagration-to-Detonation Transition in Thermonuclear Supernovae , 1996, astro-ph/9612226.

[35]  William Press,et al.  A Precise Distance Indicator: Type Ia Supernova Multicolor Light-Curve Shapes , 1996, astro-ph/9604143.

[36]  P. Hoeflich,et al.  Explosion Models for Type IA Supernovae: A Comparison with Observed Light Curves, Distances, H 0, and Q 0 , 1996, astro-ph/9602025.

[37]  D. Branch,et al.  Statistical Connections between the Properties of Type IA Supernovae and the B-V Colors of Their Parent Galaxies, and the Value of H 0 , 1995, astro-ph/9510071.

[38]  Alexei M. Khokhlov,et al.  Propagation of Turbulent Flames in Supernovae , 1995 .

[39]  P. Hoeflich,et al.  Analysis of the Type IA Supernova SN 1994D , 1995, astro-ph/9602005.

[40]  S. Woosley,et al.  Galactic Chemical Evolution: Hydrogen Through Zinc , 1994, astro-ph/9411003.

[41]  M. Goldsmith New reports make recommendations, ask for resources to stem TB epidemic. , 1993, JAMA.

[42]  Alan Uomoto,et al.  THE TYPE IA SUPERNOVA 1986G IN NGC 5128 : OPTICAL PHOTOMETRY AND SPECTRA. , 1987 .

[43]  I. Iben,et al.  Carbon ignition in a rapidly accreting degenerate dwarf - A clue to the nature of the merging process in close binaries. , 1985 .

[44]  J. C. Wheeler,et al.  Models for Type I supernovae - Partially incinerated white dwarfs , 1984 .

[45]  I. Iben,et al.  Asymptotic giant branch evolution of intermediate-mass stars as a function of mass and composition. II. Through the first major thermal pulse and the consequences of convective dredge-up , 1980 .

[46]  David Arnett,et al.  Radiation Dynamics, Envelope Ejection, and Supernova Light Curves , 1977 .

[47]  W. Arnett,et al.  A possible model of supernovae: Detonation of12C , 1969 .

[48]  William A. Fowler,et al.  Nucleosynthesis in Supernovae. , 1960 .

[49]  J. Isern,et al.  Smoothed Particle Hydrodynamics simulations of merging white dwarfs , 2004 .

[50]  Danielle Alloin,et al.  Stellar candles for the extragalactic distance scale , 2003 .

[51]  S. Woosley,et al.  Nucleosynthesis and chemical evolution : sixteenth advanced course of the Swiss Society of Astronomy and Astrophysics , 1986 .