Neuroimaging Study Designs, Computational Analyses and Data Provenance Using the LONI Pipeline

Modern computational neuroscience employs diverse software tools and multidisciplinary expertise to analyze heterogeneous brain data. The classical problems of gathering meaningful data, fitting specific models, and discovering appropriate analysis and visualization tools give way to a new class of computational challenges—management of large and incongruous data, integration and interoperability of computational resources, and data provenance. We designed, implemented and validated a new paradigm for addressing these challenges in the neuroimaging field. Our solution is based on the LONI Pipeline environment [3], [4], a graphical workflow environment for constructing and executing complex data processing protocols. We developed study-design, database and visual language programming functionalities within the LONI Pipeline that enable the construction of complete, elaborate and robust graphical workflows for analyzing neuroimaging and other data. These workflows facilitate open sharing and communication of data and metadata, concrete processing protocols, result validation, and study replication among different investigators and research groups. The LONI Pipeline features include distributed grid-enabled infrastructure, virtualized execution environment, efficient integration, data provenance, validation and distribution of new computational tools, automated data format conversion, and an intuitive graphical user interface. We demonstrate the new LONI Pipeline features using large scale neuroimaging studies based on data from the International Consortium for Brain Mapping [5] and the Alzheimer's Disease Neuroimaging Initiative [6]. User guides, forums, instructions and downloads of the LONI Pipeline environment are available at http://pipeline.loni.ucla.edu.

[1]  Ron Kikinis,et al.  3D Slicer , 2012, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[2]  Paul M. Thompson,et al.  Comparing gray matter loss profiles between dementia with Lewy bodies and Alzheimer's disease using cortical pattern matching: diagnosis and gender effects , 2004, NeuroImage.

[3]  Paul T. Groth,et al.  The Requirements of Using Provenance in e-Science Experiments , 2007, Journal of Grid Computing.

[4]  Rohit Bakshi,et al.  Multiple Sclerosis Medical Image Analysis and Information Management , 2005, Journal of neuroimaging : official journal of the American Society of Neuroimaging.

[5]  R. Woods,et al.  Gender effects on cortical thickness and the influence of scaling , 2006, Human brain mapping.

[6]  A. Toga,et al.  Mapping brain maturation , 2006, Trends in Neurosciences.

[7]  Gregor von Laszewski,et al.  A Collaborative Informatics Infrastructure for Multi-Scale Science , 2004, Proceedings of the Second International Workshop on Challenges of Large Applications in Distributed Environments, 2004. CLADE 2004..

[8]  Steve Kubica,et al.  Data Parallel Programming with the Khoros Data Services Library , 1998, IPPS/SPDP Workshops.

[9]  Ian J. Taylor,et al.  Visual Grid Workflow in Triana , 2005, Journal of Grid Computing.

[10]  Paul M. Thompson,et al.  Quantitative comparison and analysis of brain image registration using frequency-adaptive wavelet shrinkage , 2002, IEEE Transactions on Information Technology in Biomedicine.

[11]  Paul M. Thompson,et al.  Brain Anatomical Structure Segmentation by Hybrid Discriminative/Generative Models , 2008, IEEE Transactions on Medical Imaging.

[12]  Arthur W. Toga,et al.  Neuroimaging Data Provenance Using the LONI Pipeline Workflow Environment , 2008, IPAW.

[13]  Paul M. Thompson,et al.  Generalized Tensor-Based Morphometry of HIV/AIDS Using Multivariate Statistics on Deformation Tensors , 2008, IEEE Transactions on Medical Imaging.

[14]  Kiralee M. Hayashi,et al.  Thinning of the cerebral cortex visualized in HIV/AIDS reflects CD4+ T lymphocyte decline , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Yogesh L. Simmhan,et al.  A survey of data provenance in e-science , 2005, SGMD.

[16]  Charles DeCarli,et al.  Sex, Apolipoprotein E ε4 Status, and Hippocampal Volume in Mild Cognitive Impairment , 2005 .

[17]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[18]  W. Drevets Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders , 2001, Current Opinion in Neurobiology.

[19]  Wolfgang Gentzsch,et al.  Grid Computing: A New Technology for the Advanced Web , 2001, IWCC.

[20]  Kiralee M. Hayashi,et al.  Dynamic mapping of normal human hippocampal development , 2006, Hippocampus.

[21]  Paul M. Thompson,et al.  Functional MRI BOLD response to Tower of London performance of first-episode schizophrenia patients using cortical pattern matching , 2005, NeuroImage.

[22]  M. Just,et al.  Functional and anatomical cortical underconnectivity in autism: evidence from an FMRI study of an executive function task and corpus callosum morphometry. , 2007, Cerebral cortex.

[23]  Alan C. Evans,et al.  Automated 3-D Extraction of Inner and Outer Surfaces of Cerebral Cortex from MRI , 2000, NeuroImage.

[24]  Arthur W Toga,et al.  Localisation of increased prefrontal white matter in pathological liars , 2007, British Journal of Psychiatry.

[25]  Marieke Langen,et al.  Caudate Nucleus Is Enlarged in High-Functioning Medication-Naive Subjects with Autism , 2007, Biological Psychiatry.

[26]  S.C. Strother,et al.  Evaluating fMRI preprocessing pipelines , 2006, IEEE Engineering in Medicine and Biology Magazine.

[27]  Bernice Porjesz,et al.  Reduced frontal lobe activity in subjects with high impulsivity and alcoholism. , 2007, Alcoholism, clinical and experimental research.

[28]  Arthur W Toga,et al.  The LONI Pipeline Processing Environment , 2003, NeuroImage.

[29]  M. Folstein,et al.  Population-based norms for the Mini-Mental State Examination by age and educational level. , 1993, JAMA.

[30]  Carole A. Goble,et al.  Mining Taverna's semantic web of provenance , 2008, Concurr. Comput. Pract. Exp..

[31]  Arthur W. Toga,et al.  iTools: A Framework for Classification, Categorization and Integration of Computational Biology Resources , 2008, PloS one.

[32]  Arthur W. Toga,et al.  A meta-algorithm for brain extraction in MRI , 2004, NeuroImage.

[33]  Kiralee M. Hayashi,et al.  Dynamics of Gray Matter Loss in Alzheimer's Disease , 2003, The Journal of Neuroscience.

[34]  José C. Cunha,et al.  Grid Computing: Software Environments and Tools , 2005 .

[35]  Edward A. Lee,et al.  Scientific workflow management and the Kepler system , 2006, Concurr. Comput. Pract. Exp..

[36]  R W Cox,et al.  AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. , 1996, Computers and biomedical research, an international journal.

[37]  Yanxi Liu,et al.  Discriminative MR Image Feature Analysis for Automatic Schizophrenia and Alzheimer's Disease Classification , 2004, MICCAI.

[38]  Jano I. van Hemert,et al.  Scientific Workflow: A Survey and Research Directions , 2007, PPAM.

[39]  Simon Ameer-Beg,et al.  Biomedical Imaging: From Nano to Macro , 2008 .

[40]  C. Jack,et al.  Ways toward an early diagnosis in Alzheimer’s disease: The Alzheimer’s Disease Neuroimaging Initiative (ADNI) , 2005, Alzheimer's & Dementia.

[41]  Mark W. Woolrich,et al.  Advances in functional and structural MR image analysis and implementation as FSL , 2004, NeuroImage.

[42]  Arthur W. Toga,et al.  The LONI Debabeler: a mediator for neuroimaging software , 2005, NeuroImage.

[43]  Carson C. Chow,et al.  Variability in neuronal activity in primate cortex during working memory tasks , 2007, Neuroscience.

[44]  Charles DeCarli,et al.  Sex, apolipoprotein E epsilon 4 status, and hippocampal volume in mild cognitive impairment. , 2005, Archives of neurology.

[45]  R. Woods,et al.  Sex differences in cortical thickness mapped in 176 healthy individuals between 7 and 87 years of age. , 2007, Cerebral cortex.

[46]  Timothy R. Olsen,et al.  The Extensible Neuroimaging Archive Toolkit: an informatics platform for managing, exploring, and sharing neuroimaging data. , 2007, Neuroinformatics.

[47]  Yogesh L. Simmhan,et al.  Karma2: Provenance Management for Data-Driven Workflows , 2008, Int. J. Web Serv. Res..

[48]  Jan-Martin Kuhnigk,et al.  Comparison of Four Freely Available Frameworks for Image Processing and Visualization That Use ITK , 2007, IEEE Transactions on Visualization and Computer Graphics.

[49]  Suyash P. Awate,et al.  MRI Tissue Classification with Neighborhood Statistics: A Nonparametric, Entropy-Minimizing Approach , 2005, MICCAI.

[50]  Arthur W. Toga,et al.  IRMA: An Image Registration Meta-algorithm , 2008, SSDBM.

[51]  Arthur W. Toga,et al.  A Probabilistic Atlas of the Human Brain: Theory and Rationale for Its Development The International Consortium for Brain Mapping (ICBM) , 1995, NeuroImage.

[52]  Daniel S. Marcus,et al.  The extensible neuroimaging archive toolkit , 2007, Neuroinformatics.

[53]  Dana H. Brooks,et al.  SCIRun/BioPSE: integrated problem solving environment for bioelectric field problems and visualization , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[54]  Yogesh L. Simmhan,et al.  The Trident Scientific Workflow Workbench , 2008, 2008 IEEE Fourth International Conference on eScience.

[55]  Thomas Steinke,et al.  Medical Image Processing in MediGRID , 2007 .

[56]  Lars Kai Hansen,et al.  Optimizing the fMRI data-processing pipeline using prediction and reproducibility performance metrics: I. A preliminary group analysis , 2004, NeuroImage.

[57]  Norbert Schuff,et al.  Longitudinal stability of MRI for mapping brain change using tensor-based morphometry , 2006, NeuroImage.

[58]  Nick C Fox,et al.  The Alzheimer's disease neuroimaging initiative (ADNI): MRI methods , 2008, Journal of magnetic resonance imaging : JMRI.

[59]  Ron Kikinis,et al.  Lobar Distribution of Lesion Volumes in Late-Life Depression: The Biomedical Informatics Research Network (BIRN) , 2006, Neuropsychopharmacology.

[60]  Arthur W. Toga,et al.  Cerebellar cortical atrophy in experimental autoimmune encephalomyelitis , 2006, NeuroImage.

[61]  Paul M. Thompson,et al.  Asymmetries of cortical shape: Effects of handedness, sex and schizophrenia , 2007, NeuroImage.

[62]  Arthur W. Toga,et al.  Effi cient , distributed and interactive neuroimaging data analysis using the LONI Pipeline , 2009 .

[63]  Yolanda Gil,et al.  Pegasus: Mapping Scientific Workflows onto the Grid , 2004, European Across Grids Conference.

[64]  R. Passingham,et al.  Reading Hidden Intentions in the Human Brain , 2007, Current Biology.

[65]  Thomas M. Deserno,et al.  Evaluation of free non-diagnostic DICOM software tools , 2008, SPIE Medical Imaging.

[66]  Jürgen Weese,et al.  Image registration: convex weighting functions for histogram-based similarity measures , 1997, CVRMed.

[67]  Anders M. Dale,et al.  A hybrid approach to the Skull Stripping problem in MRI , 2001, NeuroImage.

[68]  D. Collins,et al.  Automatic 3D Intersubject Registration of MR Volumetric Data in Standardized Talairach Space , 1994, Journal of computer assisted tomography.

[69]  Mark Burgess,et al.  Key research challenges in network management , 2007, IEEE Communications Magazine.

[70]  Jason Maassen,et al.  Programming Scientific and Distributed Workflow with Triana Services , 2004 .

[71]  Mark R. Symms,et al.  The Relationship between the Apparent Diffusion Coefficient Measured by Magnetic Resonance Imaging, Anoxic Depolarization, and Glutamate Efflux during Experimental Cerebral Ischemia , 2000, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[72]  Dennis B. Troup,et al.  NCBI GEO: archive for high-throughput functional genomic data , 2008, Nucleic Acids Res..

[73]  Martin Senger,et al.  BioMoby extensions to the Taverna workflow management and enactment software , 2006, BMC Bioinformatics.

[74]  Katrin Amunts,et al.  Cytoarchitecture of the cerebral cortex—More than localization , 2007, NeuroImage.

[75]  Bertil Folliot,et al.  Advanced Environments, Tools, and Applications for Cluster Computing , 2002, Lecture Notes in Computer Science.

[76]  Edward A. Lee,et al.  CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE Concurrency Computat.: Pract. Exper. 2000; 00:1–7 Prepared using cpeauth.cls [Version: 2002/09/19 v2.02] Taverna: Lessons in creating , 2022 .

[77]  Paul M. Thompson,et al.  3 D pattern of brain atrophy in HIV / AIDS visualized using tensor-based morphometry , 2006 .

[78]  K. Amunts,et al.  The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. , 2006, Cerebral cortex.

[79]  Paul M. Thompson,et al.  What is where and why it is important , 2007, NeuroImage.

[80]  Arthur W. Toga,et al.  Erratum to “A meta-algorithm for brain extraction in MRI” [NeuroImage 23 (2004) 625–637] , 2008, NeuroImage.

[81]  Arthur W. Toga,et al.  Provenance in neuroimaging , 2008, NeuroImage.