Estimating the concentration of gold nanoparticles incorporated on natural rubber membranes using multi-level starlet optimal segmentation

This study consolidates multi-level starlet segmentation (MLSS) and multi-level starlet optimal segmentation (MLSOS) techniques for photomicrograph segmentation, based on starlet wavelet detail levels to separate areas of interest in an input image. Several segmentation levels can be obtained using MLSS; after that, Matthews correlation coefficient is used to choose an optimal segmentation level, giving rise to MLSOS. In this paper, MLSOS is employed to estimate the concentration of gold nanoparticles with diameter around $$47$$47 nm, reduced on natural rubber membranes. These samples were used for the construction of SERS/SERRS substrates and in the study of the influence of natural rubber membranes with incorporated gold nanoparticles on the physiology of Leishmania braziliensis. Precision, recall, and accuracy are used to evaluate the segmentation performance, and MLSOS presents an accuracy greater than 88 % for this application.

[1]  David L. Olson,et al.  Advanced Data Mining Techniques , 2008 .

[2]  M. Rodríguez-Pérez,et al.  Characterization of natural rubber/gold nanoparticles SERS‐active substrate , 2013 .

[3]  V. Kumar,et al.  Facile green synthesis of gold nanoparticles using leaf extract of antidiabetic potent Cassia auriculata. , 2011, Colloids and surfaces. B, Biointerfaces.

[4]  Michael B. Wakin Sparse Image and Signal Processing: Wavelets, Curvelets, Morphological Diversity (Starck, J.-L., et al; 2010) [Book Reviews] , 2011, IEEE Signal Processing Magazine.

[5]  Alexandre Fioravante de Siqueira,et al.  An automatic method for segmentation of fission tracks in epidote crystal photomicrographs , 2014, Comput. Geosci..

[6]  P. C. Nagajyothi,et al.  Biogenic Synthesis of Gold Nanoparticles (Quasi-Spherical, Triangle, and Hexagonal) Using Lonicera Japonica Flower Extract and Its Antimicrobial Activity , 2014 .

[7]  M. Rodríguez-Pérez,et al.  Green synthesis of gold nanoparticles with self-sustained natural rubber membranes , 2013 .

[8]  A. Annamalai,et al.  Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. , 2013, Colloids and surfaces. B, Biointerfaces.

[9]  Alexandre Fioravante de Siqueira,et al.  Segmentation of scanning electron microscopy images from natural rubber samples with gold nanoparticles using starlet wavelets , 2014, Microscopy research and technique.

[10]  Xuelong Li,et al.  Saliency Detection by Multiple-Instance Learning , 2013, IEEE Transactions on Cybernetics.

[11]  S. Kannan,et al.  Green synthesis of gold nanoparticles using Citrus fruits (Citrus limon, Citrus reticulata and Citrus sinensis) aqueous extract and its characterization. , 2013, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[12]  B. Matthews Comparison of the predicted and observed secondary structure of T4 phage lysozyme. , 1975, Biochimica et biophysica acta.

[13]  S. Joo,et al.  Sonochemical syntheses of a one-dimensional Mg(II) metal-organic framework: a new precursor for preparation of MgO one-dimensional nanostructure , 2013 .

[14]  Synthesis of gold nanoparticles from different cellular fractions of Fusarium oxysporum. , 2014, Journal of nanoscience and nanotechnology.

[15]  Jean-Luc Starck,et al.  Astronomical image and data analysis , 2002 .

[16]  Xiu‐Ping Yan,et al.  Near infrared fluorescent trypsin stabilized gold nanoclusters as surface plasmon enhanced energy transfer biosensor and in vivo cancer imaging bioprobe. , 2013, Analytical chemistry.

[17]  E. Jin,et al.  Biogenic materialization using pear extract intended for the synthesis and design of ordered gold nanostructures , 2011 .

[18]  A. Job,et al.  The influence of natural rubber/Au nanoparticle membranes on the physiology of Leishmania brasiliensis. , 2012, Experimental parasitology.

[19]  D. Philip,et al.  Green synthesis of gold nanoparticles using Trigonella foenum-graecum and its size-dependent catalytic activity. , 2012, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[20]  Richard Kronland-Martinet,et al.  A real-time algorithm for signal analysis with the help of the wavelet transform , 1989 .

[21]  Jing Lin,et al.  Biomimetic one-pot synthesis of gold nanoclusters/nanoparticles for targeted tumor cellular dual-modality imaging , 2013, Nanoscale Research Letters.

[22]  อนิรุธ สืบสิงห์,et al.  Data Mining Practical Machine Learning Tools and Techniques , 2014 .

[23]  K. Adavallan,et al.  Green synthesis and characterization of gold nanoparticles using extract of anti-tumor potent Crocus sativus , 2011 .

[24]  Fionn Murtagh,et al.  Starlet Transform in Astronomical Data Processing , 2015, Handbook of Mathematical Methods in Imaging.

[25]  Pierre Baldi,et al.  Assessing the accuracy of prediction algorithms for classification: an overview , 2000, Bioinform..

[26]  M. Noruzi,et al.  Rapid green synthesis of gold nanoparticles using Rosa hybrida petal extract at room temperature. , 2011, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[27]  Hirak K. Patra,et al.  Screening of different algae for green synthesis of gold nanoparticles , 2012 .

[28]  Jean-Christophe Olivo-Marin,et al.  Tracking fluroescent spots in biological video microscopy , 2003, SPIE BiOS.

[29]  Mark J. Shensa,et al.  The discrete wavelet transform: wedding the a trous and Mallat algorithms , 1992, IEEE Trans. Signal Process..

[30]  D. Santos,et al.  Portable smart films for ultrasensitive detection and chemical analysis using SERS and SERRS , 2012 .