Dynamic Model for Magnetostrictive Systems With Applications to Damper Design

Magnetostrictive iron–gallium alloys are able to dissipate mechanical energy via eddy currents and magnetic hysteresis. The mechanically induced eddy current loss is determined by the piezomagnetic coefficient; the hysteresis loss is usually quantified by the phase lag. This study first characterizes these losses for research grade, <100>-oriented, highly textured, polycrystalline <inline-formula><tex-math notation="LaTeX"> $\mathrm{Fe_{81.6}Ga_{18.4}}$</tex-math></inline-formula> within the structural frequency range (up to 800 Hz). The magnetic biasing is provided by applying a constant current of 500 mA on a pair of electromagnets; the mechanical excitation is a sinusoidal stress wave (3 <inline-formula><tex-math notation="LaTeX">$\pm$</tex-math> </inline-formula> 0.2 MPa) superimposed on a <inline-formula><tex-math notation="LaTeX">$-$</tex-math> </inline-formula>20 MPa constant stress. As stress frequency increases, the piezomagnetic coefficient decreases from 32.27 to 10.33 T/GPa and the phase lag <inline-formula><tex-math notation="LaTeX">$|\Delta \phi |$</tex-math> </inline-formula> increases from 11.38<inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math></inline-formula> to 43.87<inline-formula><tex-math notation="LaTeX">$^\circ$</tex-math></inline-formula>. A rate-dependent finite element framework decoupling eddy current loss and hysteresis loss is then developed. The model accurately reproduces the experimental results in both quasi-static and dynamic regimes. Guided by the knowledge of material properties and the finite element model, a coil-less and solid-state damper is designed which can attenuate vibrations before they propagate and induce structure-borne noise and damage. Modeling results show that the loss factor of this damper can be continuously tuned from 0 to a maximum value of 0.107 by adjusting the precompression on the magnetostrictive component.

[1]  Alison B. Flatau,et al.  Characterization and energy-based model of the magnetomechanical behavior of polycrystalline iron–gallium alloys , 2007 .

[2]  U-Xuan Tan,et al.  Feedforward Controller of Ill-Conditioned Hysteresis Using Singularity-Free Prandtl–Ishlinskii Model , 2009, IEEE/ASME Transactions on Mechatronics.

[3]  Marcelo J. Dapino,et al.  A dynamic model for a displacement amplified magnetostrictive driver for active mounts , 2010 .

[4]  S. Busbridge,et al.  Dynamic Experiments of Strain and Magnetic Field for Galfenol Rod and Its Modeling , 2016, IEEE Transactions on Applied Superconductivity.

[5]  Zhangxian Deng,et al.  Influence of electrical impedance and mechanical bistability on Galfenol-based unimorph harvesters , 2017 .

[6]  E. Summers,et al.  Hysteresis, d*33 and d33 of Fe81.6Ga18.4 textured polycrystals , 2011 .

[7]  Justin J. Scheidler,et al.  Validated linear dynamic model of electrically-shunted magnetostrictive transducers with application to structural vibration control , 2017 .

[8]  Justin J. Scheidler,et al.  Experimental comparison of piezoelectric and magnetostrictive shunt dampers , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[9]  William D. Armstrong,et al.  An incremental theory of magneto-elastic hysteresis in pseudo-cubic ferro-magnetostrictive alloys , 2003 .

[10]  M. Dapino,et al.  Modeling and design of Galfenol unimorph energy harvesters , 2015 .

[11]  Zhangxian Deng,et al.  Major and minor stress-magnetization loops in textured polycrystalline Fe81.6Ga18.4 Galfenol , 2013 .

[12]  Zhangxian Deng Dynamic discrete energy-averaged model for magnetostrictive materials , 2017 .

[13]  Bowen Wang,et al.  High frequency characterization of Galfenol minor flux density loops , 2017 .

[14]  Xinkai Chen,et al.  A Comprehensive Dynamic Model for Magnetostrictive Actuators Considering Different Input Frequencies With Mechanical Loads , 2016, IEEE Transactions on Industrial Informatics.

[15]  Zhangxian Deng Nonlinear Modeling and Characterization of the Villari Effect and Model-guided Development of Magnetostrictive Energy Harvesters and Dampers , 2015 .

[16]  Justin J. Scheidler,et al.  Vibration control via stiffness switching of magnetostrictive transducers , 2016, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[17]  Zhangxian Deng,et al.  Magnetostrictive vibration damper and energy harvester for rotating machinery , 2015, Smart Structures.

[18]  H. Janocha,et al.  FPGA-Based Compensator of Hysteretic Actuator Nonlinearities for Highly Dynamic Applications , 2008, IEEE/ASME Transactions on Mechatronics.

[19]  A. Mahadevan,et al.  Dependence of magnetic susceptibility on stress in textured polycrystalline Fe81.6Ga18.4 and Fe79.1Ga20.9 Galfenol alloys , 2010 .

[20]  Justin J. Scheidler,et al.  Dynamically tuned magnetostrictive spring with electrically controlled stiffness , 2016 .

[21]  Alison B. Flatau,et al.  Experimental Investigation of Terfenol-D's Elastic Modulus , 2008 .

[22]  M. Dapino,et al.  Frequency-dependent, dynamic sensing properties of polycrystalline Galfenol (Fe81.6Ga18.4) , 2016 .

[23]  M. Dapino,et al.  State-Space Constitutive Model for Magnetization and Magnetostriction of Galfenol Alloys , 2008, IEEE Transactions on Magnetics.

[24]  Zhangxian Deng,et al.  Characterization and finite element modeling of Galfenol minor flux density loops , 2013, Smart Structures.

[25]  Marcelo J. Dapino,et al.  Efficient magnetic hysteresis model for field and stress application in magnetostrictive Galfenol , 2010 .

[26]  M. Dapino,et al.  Magnetic flux biasing of magnetostrictive sensors , 2017 .

[27]  C. Su,et al.  An Analytical Generalized Prandtl–Ishlinskii Model Inversion for Hysteresis Compensation in Micropositioning Control , 2011, IEEE/ASME Transactions on Mechatronics.

[28]  D. G. Lord,et al.  Application of the Villari effect to electric power harvesting , 2006 .

[29]  Justin J. Scheidler,et al.  Mechanically induced magnetic diffusion in cylindrical magnetoelastic materials , 2016 .

[30]  Daining Fang,et al.  An energy-based dynamic loss hysteresis model for giant magnetostrictive materials , 2013 .

[31]  G. Akhras,et al.  A three dimensional rate equation model for the dynamical sensing effect of magnetostrictive Galfenol , 2011 .

[32]  M. Dapino,et al.  Quasi-static major and minor strain-stress loops in textured polycrystalline Fe81.6Ga18.4 Galfenol , 2016 .

[33]  Alison B. Flatau,et al.  Evaluation of magnetostrictive shunt damper performance using Iron (Fe)-Gallium (Ga) alloy , 2014, Smart Structures.