DNA-dependent SUMO modification of PARP-1☆

[1]  J. Pascal,et al.  Structural Basis for DNA Damage–Dependent Poly(ADP-ribosyl)ation by Human PARP-1 , 2012, Science.

[2]  J. Lis,et al.  Activator-induced spread of poly(ADP-ribose) polymerase promotes nucleosome loss at Hsp70. , 2012, Molecular cell.

[3]  P. Cole,et al.  The DNA-Binding Domain of Human PARP-1 Interacts with DNA Single-Strand Breaks as a Monomer through Its Second Zinc Finger , 2011, Journal of molecular biology.

[4]  J. Pascal,et al.  Crystal Structures of Poly(ADP-ribose) Polymerase-1 (PARP-1) Zinc Fingers Bound to DNA , 2011, The Journal of Biological Chemistry.

[5]  Jaclyn R. Gareau,et al.  The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition , 2010, Nature Reviews Molecular Cell Biology.

[6]  J. Pascal,et al.  The Zn3 Domain of Human Poly(ADP-ribose) Polymerase-1 (PARP-1) Functions in Both DNA-dependent Poly(ADP-ribose) Synthesis Activity and Chromatin Compaction* , 2010, The Journal of Biological Chemistry.

[7]  P. Sung,et al.  Rad52 SUMOylation affects the efficiency of the DNA repair , 2010, Nucleic acids research.

[8]  S. Gygi,et al.  PIASy Mediates SUMO-2/3 Conjugation of Poly(ADP-ribose) Polymerase 1 (PARP1) on Mitotic Chromosomes* , 2010, The Journal of Biological Chemistry.

[9]  A. Dejean,et al.  PARP‐1 transcriptional activity is regulated by sumoylation upon heat shock , 2009, The EMBO journal.

[10]  S. Müller,et al.  Sumoylation of poly(ADP‐ribose) polymerase 1 inhibits its acetylation and restrains transcriptional coactivator function , 2009, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[11]  S. West,et al.  Poly(ADP-ribose)–Dependent Regulation of DNA Repair by the Chromatin Remodeling Enzyme ALC1 , 2009, Science.

[12]  M. Washburn,et al.  Poly(ADP-ribosyl)ation directs recruitment and activation of an ATP-dependent chromatin remodeler , 2009, Proceedings of the National Academy of Sciences.

[13]  E. Stelzer,et al.  A macrodomain-containing histone rearranges chromatin upon sensing PARP1 activation , 2009, Nature Structural &Molecular Biology.

[14]  Simon Messner,et al.  Molecular mechanism of poly(ADP-ribosyl)ation by PARP1 and identification of lysine residues as ADP-ribose acceptor sites , 2009, Nucleic acids research.

[15]  Sampsa Hautaniemi,et al.  Novel Proteomics Strategy Brings Insight into the Prevalence of SUMO-2 Target Sites* , 2009, Molecular & Cellular Proteomics.

[16]  R. Dohmen,et al.  Arsenic trioxide stimulates SUMO‐2/3 modification leading to RNF4‐dependent proteolytic targeting of PML , 2008, FEBS letters.

[17]  A. Davies,et al.  SUMO modification of PCNA is controlled by DNA , 2008, The EMBO journal.

[18]  M. Mann,et al.  Ubc9 sumoylation regulates SUMO target discrimination. , 2008, Molecular cell.

[19]  G. Dianov,et al.  Poly ADP-ribose polymerase-1: an international molecule of mystery. , 2008, DNA repair.

[20]  W. Kraus Transcriptional control by PARP-1: chromatin modulation, enhancer-binding, coregulation, and insulation. , 2008, Current opinion in cell biology.

[21]  Hung‐wen Liu,et al.  Domain C of human poly(ADP-ribose) polymerase-1 is important for enzyme activity and contains a novel zinc-ribbon motif. , 2008, Biochemistry.

[22]  J. Pascal,et al.  A Third Zinc-binding Domain of Human Poly(ADP-ribose) Polymerase-1 Coordinates DNA-dependent Enzyme Activation* , 2008, Journal of Biological Chemistry.

[23]  F. Melchior,et al.  Concepts in sumoylation: a decade on , 2007, Nature Reviews Molecular Cell Biology.

[24]  Oliver Kerscher,et al.  SUMO junction—what's your function? , 2007, EMBO reports.

[25]  N. Ellis,et al.  SUMO: the glue that binds. , 2006, Developmental cell.

[26]  V. Schreiber,et al.  Poly(ADP-ribose): novel functions for an old molecule , 2006, Nature Reviews Molecular Cell Biology.

[27]  L. McIntosh,et al.  Beads-on-a-String, Characterization of Ets-1 Sumoylated within Its Flexible N-terminal Sequence* , 2006, Journal of Biological Chemistry.

[28]  Sylvie Garneau-Tsodikova,et al.  Protein posttranslational modifications: the chemistry of proteome diversifications. , 2005, Angewandte Chemie.

[29]  Fumio Hanaoka,et al.  Crystal structure of thymine DNA glycosylase conjugated to SUMO-1 , 2005, Nature.

[30]  Y. Lyubchenko,et al.  Regulation of Poly(ADP-ribose) Polymerase-1 by DNA Structure-specific Binding* , 2005, Journal of Biological Chemistry.

[31]  P. Schär,et al.  Functionality of Human Thymine DNA Glycosylase Requires SUMO-Regulated Changes in Protein Conformation , 2005, Current Biology.

[32]  D. Reinberg,et al.  PARP-1 determines specificity in a retinoid signaling pathway via direct modulation of mediator. , 2005, Molecular cell.

[33]  Roman Körner,et al.  SUMO modification of the ubiquitin-conjugating enzyme E2-25K , 2005, Nature Structural &Molecular Biology.

[34]  L. McIntosh,et al.  Structural and Dynamic Independence of Isopeptide-linked RanGAP1 and SUMO-1* , 2004, Journal of Biological Chemistry.

[35]  G. de Murcia,et al.  The PARP superfamily , 2004, BioEssays : news and reviews in molecular, cellular and developmental biology.

[36]  J. Jiricny,et al.  Modification of the human thymine‐DNA glycosylase by ubiquitin‐like proteins facilitates enzymatic turnover , 2002, The EMBO journal.

[37]  Christopher D. Lima,et al.  Structural Basis for E2-Mediated SUMO Conjugation Revealed by a Complex between Ubiquitin-Conjugating Enzyme Ubc9 and RanGAP1 , 2002, Cell.

[38]  A. Dejean,et al.  c-Jun and p53 Activity Is Modulated by SUMO-1 Modification* , 2000, The Journal of Biological Chemistry.

[39]  J. Widom,et al.  New DNA sequence rules for high affinity binding to histone octamer and sequence-directed nucleosome positioning. , 1998, Journal of molecular biology.

[40]  M. Malanga,et al.  Targeting of histone tails by poly(ADP-ribose). , 1993, The Journal of biological chemistry.

[41]  H. Naegeli,et al.  Histone shuttling by poly ADP-ribosylation , 1992, Molecular and Cellular Biochemistry.

[42]  T Ogura,et al.  The zinc fingers of human poly(ADP-ribose) polymerase are differentially required for the recognition of DNA breaks and nicks and the consequent enzyme activation. Other structures recognize intact DNA. , 1990, The Journal of biological chemistry.

[43]  J. Hoeijmakers,et al.  The second zinc-finger domain of poly(ADP-ribose) polymerase determines specificity for single-stranded breaks in DNA. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[44]  F. Simonin,et al.  Zinc-binding domain of poly(ADP-ribose)polymerase participates in the recognition of single strand breaks on DNA. , 1989, Journal of molecular biology.

[45]  E. Kun,et al.  Binding of adenosine diphosphoribosyltransferase to the termini and internal regions of linear DNAs. , 1989, Biochemistry.

[46]  G. de Murcia,et al.  Poly(ADP-ribose) polymerase forms loops with DNA. , 1987, Biochemical and biophysical research communications.

[47]  C. Lima,et al.  Purification of SUMO conjugating enzymes and kinetic analysis of substrate conjugation. , 2009, Methods in molecular biology.

[48]  F. Melchior,et al.  Performing in vitro sumoylation reactions using recombinant enzymes. , 2009, Methods in molecular biology.

[49]  V. Schreiber,et al.  Poly(ADP-ribose) polymerase-1 activation during DNA damage and repair. , 2006, Methods in enzymology.