Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models
暂无分享,去创建一个
M. King | Yongxiang Hu | P. Yang | A. Heymsfield | B. Baum | S. Platnick | S. Bedka
[1] A. Heymsfield. Cirrus Uncinus Generating Cells and the Evolution of Cirriform Clouds. Part I: Aircraft Observations of the Growth of the Ice Phase , 1975 .
[2] H. Neckel,et al. The solar radiation between 3300 and 12500 Å , 1984 .
[3] Ingemar Furenlid,et al. Solar flux atlas from 296 to 1300 nm , 1985 .
[4] Andrew J. Heymsfield,et al. A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and the ice water content , 1984 .
[5] K. Liou,et al. Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals , 1989 .
[6] W. Paul Menzel,et al. Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..
[7] K. Liou,et al. Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space , 1996 .
[8] K. Liou,et al. Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.
[9] Thomas S. Pagano,et al. Prelaunch characteristics of the Moderate Resolution Imaging Spectroradiometer (MODIS) on EOS-AM1 , 1998, IEEE Trans. Geosci. Remote. Sens..
[10] K. Liou,et al. Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .
[11] K. Liou,et al. Parameterization of the scattering and absorption properties of individual ice crystals , 2000 .
[12] H. Gerber,et al. Nephelometer Measurements of the Asymmetry Parameter, Volume Extinction Coefficient, and Backscatter Ratio in Arctic Clouds , 2000 .
[13] Bryan A. Baum,et al. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .
[14] W. Paul Menzel,et al. Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 2. Cloud thermodynamic phase , 2000 .
[15] H. Gerber,et al. Shortwave, single‐scattering properties of arctic ice clouds , 2001 .
[16] J. Gayet,et al. In Situ Observation of Cirrus Scattering Phase Functions with 22° and 46° Halos: Cloud Field Study on 19 February 1998 , 2001 .
[17] Bryan A. Baum,et al. The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data , 2002 .
[18] Stephen L. Durden,et al. Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field Campaigns , 2002 .
[19] W. Paul Menzel,et al. The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..
[20] Timothy J. Garrett,et al. Small, highly reflective ice crystals in low‐latitude cirrus , 2003 .
[21] Bryan A. Baum,et al. Single scattering properties of droxtals , 2003 .
[22] Steven Platnick,et al. Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data , 2004 .
[23] Yongxiang Hu,et al. Geometrical-optics solution to light scattering by droxtal ice crystals. , 2004, Applied optics.
[24] Bryan A. Baum,et al. Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models. , 2005 .