Clustering Methods Applied for Gene Expression Data: A Study

In bioinformatics research, the biggest challenge is to extract information from large datasets according to ones interestingness criteria. For research in genetics the DNA microarray technology provides better results in comparison with the standard approach as it has computerized the parallel analysis of thousands of genes for monitoring expression levels of genes. Thus, for the biologists the challenge to analyze gene data which consists of a huge number of measurements is in the range of clustering techniques. For the above purpose till now various clustering techniques have been developed and applied on gene microarray data. Thus, this study paper is aimed to provide a brief review of the various research papers and journals on recent research done for cluster analysis of gene microarray data.

[1]  Wei Wang An Improved Non-negative Matrix Factorization Algorithm for Combining Multiple Clusterings , 2010, 2010 International Conference on Machine Vision and Human-machine Interface.

[2]  Francisco Azuaje,et al.  Cluster validation techniques for genome expression data , 2003, Signal Process..

[3]  R. Suganya,et al.  Data Mining Concepts and Techniques , 2010 .

[4]  Toshimitsu Hamasaki,et al.  Evaluation of Clustering Based on Preprocessing in Gene Expression Data , 2007 .

[5]  J. Mesirov,et al.  Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Aidong Zhang,et al.  Cluster analysis for gene expression data: a survey , 2004, IEEE Transactions on Knowledge and Data Engineering.

[7]  Chitta Baral,et al.  Fuzzy C-means Clustering with Prior Biological Knowledge , 2022 .

[8]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[9]  YanWang,et al.  Missing value estimation for microarray data based on fuzzy C-means clustering , 2005, Eighth International Conference on High-Performance Computing in Asia-Pacific Region (HPCASIA'05).

[10]  William Stafford Noble,et al.  Kernel hierarchical gene clustering from microarray expression data , 2003, Bioinform..

[11]  J. Dunn Well-Separated Clusters and Optimal Fuzzy Partitions , 1974 .

[12]  Ali Ridho Barakbah,et al.  Hierarchical K-means: an algorithm for centroids initialization for K-means , 2007 .

[13]  Michalis Vazirgiannis,et al.  c ○ 2001 Kluwer Academic Publishers. Manufactured in The Netherlands. On Clustering Validation Techniques , 2022 .

[14]  Michael I. Jordan,et al.  Feature selection for high-dimensional genomic microarray data , 2001, ICML.

[15]  Donald W. Bouldin,et al.  A Cluster Separation Measure , 1979, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[16]  L. B. Jack,et al.  Investigation of Self-Organizing Oscillator Networks for Use in Clustering Microarray Data , 2008, IEEE Transactions on NanoBioscience.

[17]  Zhi-Qiang Liu,et al.  Self-splitting competitive learning: a new on-line clustering paradigm , 2002, IEEE Trans. Neural Networks.

[18]  Taizo Hanai,et al.  Analysis of expression profile using fuzzy adaptive resonance theory , 2002, Bioinform..

[19]  Gregory Piatetsky-Shapiro,et al.  Microarray data mining: facing the challenges , 2003, SKDD.

[20]  Hong Yan,et al.  Cluster analysis of gene expression data based on self-splitting and merging competitive learning , 2004, IEEE Transactions on Information Technology in Biomedicine.

[21]  Sandro Vega-Pons,et al.  Weighted Cluster Ensemble Using a Kernel Consensus Function , 2008, CIARP.

[22]  S. Swamynathan,et al.  An efficient hybrid clustering approach of microarray gene expression data , 2011, 2011 World Congress on Information and Communication Technologies.

[23]  Sergio Carmona,et al.  Clustering gene expression data using a diffraction‐inspired framework , 2012, BioMedical Engineering OnLine.

[24]  Stephen T. C. Wong,et al.  Multiclass Cancer Classification by Using Fuzzy Support Vector Machine and Binary Decision Tree With Gene Selection , 2005, Journal of biomedicine & biotechnology.

[25]  Heba Abusamra,et al.  A Comparative Study of Feature Selection and Classification Methods for Gene Expression Data of Glioma , 2013 .

[26]  Nikola Kasabov,et al.  Fuzzy clustering of gene expression data , 2002, 2002 IEEE World Congress on Computational Intelligence. 2002 IEEE International Conference on Fuzzy Systems. FUZZ-IEEE'02. Proceedings (Cat. No.02CH37291).

[27]  José María Carazo,et al.  Smoothly distributed fuzzy c-means: a new self-organizing map , 2001, Pattern Recognit..

[28]  Ujjwal Maulik,et al.  An improved algorithm for clustering gene expression data , 2007, Bioinform..

[29]  Ron Kohavi,et al.  Wrappers for Feature Subset Selection , 1997, Artif. Intell..

[30]  Asoke K. Nandi,et al.  Clustering analysis for gene expression data: A methodological review , 2012, 2012 5th International Symposium on Communications, Control and Signal Processing.

[31]  James C. Bezdek,et al.  Some new indexes of cluster validity , 1998, IEEE Trans. Syst. Man Cybern. Part B.

[32]  Dhruba K. Bhattacharyya,et al.  An Effective Technique for Clustering Incremental Gene Expression data , 2010 .

[33]  Inderjit S. Dhillon,et al.  Kernel k-means: spectral clustering and normalized cuts , 2004, KDD.

[34]  Mohamed S. Kamel,et al.  On voting-based consensus of cluster ensembles , 2010, Pattern Recognit..

[35]  Mark J. van der Laan,et al.  Hybrid Clustering of Gene Expression Data with Visualization and the Bootstrap , 2001 .

[36]  D Haussler,et al.  Knowledge-based analysis of microarray gene expression data by using support vector machines. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[37]  P. Rousseeuw Silhouettes: a graphical aid to the interpretation and validation of cluster analysis , 1987 .

[38]  Rui Xu,et al.  Survey of clustering algorithms , 2005, IEEE Transactions on Neural Networks.

[39]  K. Thangavel,et al.  Effective Clustering Algorithms for Gene Expression Data , 2012, ArXiv.

[40]  Francisco Azuaje,et al.  A cluster validity framework for genome expression data , 2002, Bioinform..

[41]  K. Dinakaran,et al.  Hybrid Fuzzy C-Means Clustering Technique for Gene Expression Data , 2009 .

[42]  Dechang Chen,et al.  Gene Expression Data Classification With Kernel Principal Component Analysis , 2005, Journal of biomedicine & biotechnology.