Ultrasensitive mechanical/thermal response of a P(VDF-TrFE) sensor with a tailored network interconnection interface

[1]  Xingyi Huang,et al.  Modulus-Modulated All-Organic Core-Shell Nanofiber with Remarkable Piezoelectricity for Energy Harvesting and Condition Monitoring. , 2023, Nano letters.

[2]  N. Tian,et al.  Enhancing the Piezoelectric Sensing of CFO@PDA/P(VDF-TrFE) Composite Films through Magnetic Field Orientation. , 2022, ACS applied materials & interfaces.

[3]  Christian F. Baumgartner,et al.  Design Automation for a Fully Printed P(VDF-TrFE) Transducer , 2022, International Symposium on Applications of Ferroelectrics.

[4]  S. Dong,et al.  In-Situ Electrostatic Field Regulating the Recrystallization Behavior of P(Vdf-Trfe) Films with High Β-Phase Content and Enhanced Piezoelectric Properties , 2022, SSRN Electronic Journal.

[5]  Ruipeng Li,et al.  Relaxor ferroelectric polymer exhibits ultrahigh electromechanical coupling at low electric field , 2022, Science.

[6]  Xiaohao Wang,et al.  Mapping and Simultaneous Detection of Arterial and Venous Pulses using Large‐Scale High‐Density Flexible Piezoelectret Sensor Array , 2022, Advanced Electronic Materials.

[7]  Ju Hyeon Kim,et al.  Enhanced pyroelectric conversion of thermal radiation energy: energy harvesting and non-contact proximity sensor , 2022, Nano Energy.

[8]  John X. J. Zhang,et al.  Method for Inkjet-Printing PEDOT:PSS Polymer Electrode Arrays on Piezoelectric PVDF-TrFE Fibers , 2021, IEEE Sensors Journal.

[9]  S. Dong,et al.  A 3D-printed, alternatively tilt-polarized PVDF-TrFE polymer with enhanced piezoelectric effect for self-powered sensor application , 2021, Nano Energy.

[10]  R. C. Yeow,et al.  Artificial Intelligence of Things (AIoT) Enabled Virtual Shop Applications Using Self‐Powered Sensor Enhanced Soft Robotic Manipulator , 2021, Advanced science.

[11]  K. Lozano,et al.  Piezoelectric properties of PVDF‐conjugated polymer nanofibers , 2021 .

[12]  Jizhen Zhang,et al.  Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites , 2021, Nature Communications.

[13]  Jingquan Liu,et al.  Flexible PVDF based piezoelectric nanogenerators , 2020 .

[14]  R. Paul,et al.  Interfacial effects on ferroelectric and dielectric properties of GO reinforced free-standing and flexible PVDF/ZnO composite membranes: Bias dependent impedance spectroscopy , 2020 .

[15]  Xiaoqing Zhang,et al.  Epitaxy Enhancement of Piezoelectric Properties in P(VDF‐TrFE) Copolymer Films and Applications in Sensing and Energy Harvesting , 2020, Advanced Electronic Materials.

[16]  Ruipeng Li,et al.  Enhanced piezoelectricity from highly polarizable oriented amorphous fractions in biaxially oriented poly(vinylidene fluoride) with pure β crystals , 2020, Nature Communications.

[17]  Guangzu Zhang,et al.  High pyroelectric effect in poly(vinylidene fluoride) composites cooperated with diamond nanoparticles , 2020 .

[18]  Sam S. Yoon,et al.  Sustainable Nanotextured Wave Energy Harvester Based on Ferroelectric Fatigue‐Free and Flexoelectricity‐Enhanced Piezoelectric P(VDF‐TrFE) Nanofibers with BaSrTiO3 Nanoparticles , 2020, Advanced Functional Materials.

[19]  Sylvain Blayac,et al.  PVDF-TrFE-Based Stretchable Contact and Non-Contact Temperature Sensor for E-Skin Application , 2020, Sensors.

[20]  Xuanhe Zhao,et al.  Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity , 2020, Nature Communications.

[21]  R. Murakami,et al.  Infrared-driven poly(vinylidene difluoride)/tungsten oxide pyroelectric generator for non-contact energy harvesting , 2019, Composites Science and Technology.

[22]  D. Mandal,et al.  Methylammonium Lead Iodide Incorporated Poly(vinylidene fluoride) Nanofibers for Flexible Piezoelectric-Pyroelectric Nanogenerator. , 2019, ACS applied materials & interfaces.

[23]  Nick A. Shepelin,et al.  New developments in composites, copolymer technologies and processing techniques for flexible fluoropolymer piezoelectric generators for efficient energy harvesting , 2019, Energy & Environmental Science.

[24]  Deyuan Zhang,et al.  Improved Piezoelectric Sensing Performance of P(VDF-TrFE) Nanofibers by Utilizing BTO Nanoparticles and Penetrated Electrodes. , 2019, ACS applied materials & interfaces.

[25]  Yonggang Huang,et al.  Three-dimensional piezoelectric polymer microsystems for vibrational energy harvesting, robotic interfaces and biomedical implants , 2019, Nature Electronics.

[26]  J. Bernholc,et al.  Ferroelectric polymers exhibiting behaviour reminiscent of a morphotropic phase boundary , 2018, Nature.

[27]  Jian-Sheng Wang,et al.  A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS , 2018 .

[28]  C. Hsiao,et al.  A High Aspect Ratio Micropattern in Freestanding Bulk Pyroelectric Cells , 2018 .

[29]  W. C. Gan,et al.  Ferroelectric polarization and pyroelectric activity of functionalized P(VDF-TrFE) thin film lead free nanocomposites , 2018 .

[30]  S. Lanceros‐Méndez,et al.  Electroactive poly(vinylidene fluoride)-based structures for advanced applications , 2018, Nature Protocols.

[31]  Usman Khan,et al.  High‐Performance Piezoelectric, Pyroelectric, and Triboelectric Nanogenerators Based on P(VDF‐TrFE) with Controlled Crystallinity and Dipole Alignment , 2017 .

[32]  R. I. Shakoor,et al.  Reinforcement of electroactive characteristics in polyvinylidene fluoride electrospun nanofibers by intercalation of multi-walled carbon nanotubes , 2017, Journal of Polymer Research.

[33]  Chunsheng Yang,et al.  A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices , 2016, Scientific Reports.

[34]  Younan Xia,et al.  Micropatterning of the Ferroelectric Phase in a Poly(vinylidene difluoride) Film by Plasmonic Heating with Gold Nanocages. , 2016, Angewandte Chemie.

[35]  F. Fan,et al.  Flexible Nanogenerators for Energy Harvesting and Self‐Powered Electronics , 2016, Advanced materials.

[36]  Yong Ju Park,et al.  Graphene‐Based Flexible and Stretchable Electronics , 2016, Advanced materials.

[37]  Prateek,et al.  Recent Progress on Ferroelectric Polymer-Based Nanocomposites for High Energy Density Capacitors: Synthesis, Dielectric Properties, and Future Aspects. , 2016, Chemical reviews.

[38]  Jinyou Shao,et al.  A Flexible Piezoelectric-Pyroelectric Hybrid Nanogenerator Based on P(VDF-TrFE) Nanowire Array , 2016, IEEE Transactions on Nanotechnology.

[39]  M. Benwadih,et al.  Impact of crystallization on ferro-, piezo- and pyro-electric characteristics in thin film P(VDF–TrFE) , 2015 .

[40]  P. Souéres,et al.  Hybrid PVDF/PVDF-graft-PEGMA Membranes for Improved Interface Strength and Lifetime of PEDOT:PSS/PVDF/Ionic Liquid Actuators. , 2015, ACS applied materials & interfaces.

[41]  Christopher R. Bowen,et al.  Micropatterning of Flexible and Free Standing Polyvinylidene Difluoride (PVDF) Films for Enhanced Pyroelectric Energy Transformation , 2015 .

[42]  Damar Yoga Kusuma,et al.  Polarization Orientation, Piezoelectricity, and Energy Harvesting Performance of Ferroelectric PVDF‐TrFE Nanotubes Synthesized by Nanoconfinement , 2014 .

[43]  Wan Haliza Abd Majid,et al.  Hot Plate Annealing at a Low Temperature of a Thin Ferroelectric P(VDF-TrFE) Film with an Improved Crystalline Structure for Sensors and Actuators , 2014, Sensors.

[44]  A. C. Lopes,et al.  Electroactive phases of poly(vinylidene fluoride) : determination, processing and applications , 2014 .

[45]  Y. Lam,et al.  Patterned surface with controllable wettability for inkjet printing of flexible printed electronics. , 2014, ACS applied materials & interfaces.

[46]  Choon Chiang Foo,et al.  Stretchable, Transparent, Ionic Conductors , 2013, Science.

[47]  Shengtao Li,et al.  Fundamentals, processes and applications of high-permittivity polymer–matrix composites , 2012 .

[48]  Yidong Xia,et al.  Tuned dielectric, pyroelectric and piezoelectric properties of ferroelectric P(VDF-TrFE) thin films by using mechanical loads , 2012 .

[49]  Isidro Cruz-Cruz,et al.  Study of the effect of DMSO concentration on the thickness of the PSS insulating barrier in PEDOT:PSS thin films , 2010 .

[50]  Yifan Gao,et al.  Mechanical-electrical triggers and sensors using piezoelectric micowires/nanowires. , 2008, Nano letters.

[51]  Y. Mai,et al.  Modeling Surface Electrodes on a Piezoelectric Layer , 2008 .

[52]  Q.M. Zhang,et al.  Poly(vinylidene fluoride-trifluoroethylene) based high performance electroactive polymers , 2004, IEEE Transactions on Dielectrics and Electrical Insulation.

[53]  D. Almond,et al.  Anomalous power law dispersions in ac conductivity and permittivity shown to be characteristics of microstructural electrical networks. , 2004, Physical review letters.

[54]  T. Furukawa,et al.  Piezoelectricity and pyroelectricity in polymers , 1988, 6th International Symposium on Electrets,(ISE 6) Proceedings..

[55]  E. Fukada,et al.  Piezoelectric properties in the composite systems of polymers and PZT ceramics , 1979 .

[56]  C. G. Koops On the Dispersion of Resistivity and Dielectric Constant of Some Semiconductors at Audiofrequencies , 1951 .

[57]  Fan Xu,et al.  Piezoelectric enhancement of an electrospun AlN-doped P(VDF-TrFE) nanofiber membrane , 2021 .

[58]  Jeong Ho Cho,et al.  High‐Performance Triboelectric Nanogenerators Based on Electrospun Polyvinylidene Fluoride–Silver Nanowire Composite Nanofibers , 2018 .

[59]  Y. Shuai,et al.  Enhanced pyroelectric property of PMN–PT/P[VDF–TrFE] thick film by optimizing poling temperature , 2017, Journal of Materials Science: Materials in Electronics.