Dynamic Texture Recognition Using Volume Local Binary Count Patterns With an Application to 2D Face Spoofing Detection

In this paper, a local spatiotemporal descriptor, namely, the volume local binary count (VLBC), is proposed for the representation and recognition of dynamic texture. This descriptor, which is similar in spirit to the volume local binary pattern (VLBP), extracts histograms of thresholded local spatiotemporal volumes using both appearance and motion features to describe dynamic texture. Unlike VLBP using binary encoding, VLBC does not exploit the local structure information and only counts the number of 1s in the thresholded codes. Thus, VLBC can include more neighboring pixels without exponentially increasing the feature dimension as VLBP does. Furthermore, a completed version of VLBC (CVLBC) is also proposed to enhance the performance of dynamic texture recognition with additional information about local contrast and central pixel intensities. The proposed method is not only efficient to compute but also effective for dynamic texture representation. In experiments with three dynamic texture databases, namely, UCLA, DynTex, and DynTex++, the proposed method produces classification rates that are comparable to those produced by the state-of-the-art approaches. In addition to dynamic texture recognition, we propose utilizing CVLBC for 2-D face spoofing detection. As an effective spatiotemporal descriptor, CVLBC can well describe the differences between facial videos of valid users and impostors, thus achieving good performance for face spoofing detection. For comparison with other methods, the proposed method is evaluated on three face antispoofing databases: Print-Attack, Replay-Attack, and CAS Face Antispoofing. The experimental results demonstrate the effectiveness of CVLBC for 2-D face spoofing detection.

[1]  Gang Wang,et al.  Optimizing LBP Structure For Visual Recognition Using Binary Quadratic Programming , 2014, IEEE Signal Processing Letters.

[2]  Richard P. Wildes,et al.  Spacetime Texture Representation and Recognition Based on a Spatiotemporal Orientation Analysis , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Tieniu Tan,et al.  Live face detection based on the analysis of Fourier spectra , 2004, SPIE Defense + Commercial Sensing.

[4]  Yong Xu,et al.  Wavelet Domain Multifractal Analysis for Static and Dynamic Texture Classification , 2013, IEEE Transactions on Image Processing.

[5]  Stan Z. Li,et al.  Person-Specific Face Antispoofing With Subject Domain Adaptation , 2015, IEEE Transactions on Information Forensics and Security.

[6]  Nuno Vasconcelos,et al.  Classifying Video with Kernel Dynamic Textures , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[7]  Dmitry Chetverikov,et al.  Dynamic Texture Recognition Using Normal Flow and Texture Regularity , 2005, IbPRIA.

[8]  Shervin Rahimzadeh Arashloo,et al.  Dynamic texture representation using a deep multi-scale convolutional network , 2017, J. Vis. Commun. Image Represent..

[9]  Sébastien Marcel,et al.  On the effectiveness of local binary patterns in face anti-spoofing , 2012, 2012 BIOSIG - Proceedings of the International Conference of Biometrics Special Interest Group (BIOSIG).

[10]  Hyun Seung Yang,et al.  Not all frames are equal: aggregating salient features for dynamic texture classification , 2018, Multidimens. Syst. Signal Process..

[11]  Richard P. Wildes,et al.  Spatiotemporal stereo via spatiotemporal quadric element (stequel) matching , 2009, CVPR.

[12]  Xiaogang Wang,et al.  Boosted multi-task learning for face verification with applications to web image and video search , 2009, CVPR.

[13]  William J. Christmas,et al.  Ieee Transactions on Information Forensics and Security 1 Face Spoofing Detection Based on Multiple Descriptor Fusion Using Multiscale Dynamic Binarized Statistical Image Features , 2022 .

[14]  Richard P. Wildes,et al.  Dynamic texture recognition based on distributions of spacetime oriented structure , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[15]  Yann LeCun,et al.  Convolutional Learning of Spatio-temporal Features , 2010, ECCV.

[16]  Dani Lischinski,et al.  Texture Mixing and Texture Movie Synthesis Using Statistical Learning , 2001, IEEE Trans. Vis. Comput. Graph..

[17]  A.B. Chan,et al.  Classification and retrieval of traffic video using auto-regressive stochastic processes , 2005, IEEE Proceedings. Intelligent Vehicles Symposium, 2005..

[18]  Hui Ji,et al.  Equiangular Kernel Dictionary Learning with Applications to Dynamic Texture Analysis , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[19]  Sébastien Marcel,et al.  Face Anti-spoofing Based on General Image Quality Assessment , 2014, 2014 22nd International Conference on Pattern Recognition.

[20]  Matti Pietikäinen,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON MULTIMEDIA 1 Lipreading with Local Spatiotemporal Descriptors , 2022 .

[21]  Seiichi Serikawa,et al.  Texture databases - A comprehensive survey , 2013, Pattern Recognit. Lett..

[22]  Albert A. Michelson,et al.  Studies in Optics , 1995 .

[23]  Song-Chun Zhu,et al.  Modeling textured motion : particle, wave and sketch , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[24]  Matti Pietikäinen,et al.  Dynamic Texture Recognition Using Local Binary Patterns with an Application to Facial Expressions , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Yong Wang,et al.  Exploiting high level feature for dynamic textures recognition , 2015, Neurocomputing.

[26]  Andrew W. Fitzgibbon,et al.  Shift-Invariant Dynamic Texture Recognition , 2006, ECCV.

[27]  David Windridge,et al.  Detection of Face Spoofing Using Visual Dynamics , 2015, IEEE Transactions on Information Forensics and Security.

[28]  Nuno Vasconcelos,et al.  Privacy preserving crowd monitoring: Counting people without people models or tracking , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[29]  Yi Yang,et al.  Image Classification by Cross-Media Active Learning With Privileged Information , 2016, IEEE Transactions on Multimedia.

[30]  Yong Xu,et al.  Scale-space texture description on SIFT-like textons , 2012, Comput. Vis. Image Underst..

[31]  Payam Saisan,et al.  Dynamic texture recognition , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[32]  Bart Thomee,et al.  Relevance feedback: perceptual learning and retrieval in bio-computing, photos, and video , 2004, MIR '04.

[33]  Sébastien Marcel,et al.  Counter-measures to photo attacks in face recognition: A public database and a baseline , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[34]  Subhransu Maji,et al.  Deep filter banks for texture recognition and segmentation , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  Dehui Kong,et al.  Similarity Assessment Model for Chinese Sign Language Videos , 2014, IEEE Transactions on Multimedia.

[36]  Josef Kittler,et al.  Dynamic Texture Recognition Using Multiscale Binarized Statistical Image Features , 2014, IEEE Transactions on Multimedia.

[37]  Yang Zhao,et al.  Completed Local Binary Count for Rotation Invariant Texture Classification , 2012, IEEE Transactions on Image Processing.

[38]  Lorenzo Torresani,et al.  Learning Spatiotemporal Features with 3D Convolutional Networks , 2014, 2015 IEEE International Conference on Computer Vision (ICCV).

[39]  Matti Pietikäinen,et al.  Modeling pixel process with scale invariant local patterns for background subtraction in complex scenes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[40]  Iasonas Kokkinos,et al.  Describing Textures in the Wild , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[41]  Sébastien Marcel,et al.  LBP - TOP Based Countermeasure against Face Spoofing Attacks , 2012, ACCV Workshops.

[42]  Shiguang Shan,et al.  Modeling Video Dynamics with Deep Dynencoder , 2014, ECCV.

[43]  Andrea Vedaldi,et al.  Texture Networks: Feed-forward Synthesis of Textures and Stylized Images , 2016, ICML.

[44]  Yi Li,et al.  Face Liveness Detection from a Single Image with Sparse Low Rank Bilinear Discriminative Model , 2010, ECCV.

[45]  Richard P. Wildes,et al.  Visual Tracking Using a Pixelwise Spatiotemporal Oriented Energy Representation , 2010, ECCV.

[46]  Vipin Tyagi,et al.  Dynamic texture recognition based on completed volume local binary pattern , 2016, Multidimens. Syst. Signal Process..

[47]  Zhiyong Yuan,et al.  Local binary pattern based texture analysis for visual fire recognition , 2010, 2010 3rd International Congress on Image and Signal Processing.

[48]  Yi Yang,et al.  Image Clustering Using Local Discriminant Models and Global Integration , 2010, IEEE Transactions on Image Processing.

[49]  A. Bouzerdoum,et al.  Texture Classification using Convolutional Neural Networks , 2006, TENCON 2006 - 2006 IEEE Region 10 Conference.

[50]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  Narendra Ahuja,et al.  Maximum Margin Distance Learning for Dynamic Texture Recognition , 2010, ECCV.

[52]  Samarth Bharadwaj,et al.  Computationally Efficient Face Spoofing Detection with Motion Magnification , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition Workshops.

[53]  Ivana Chingovska,et al.  On the Use of Client Identity Information for Face Antispoofing , 2015, IEEE Transactions on Information Forensics and Security.

[54]  Matti Pietikäinen,et al.  Face liveness detection using dynamic texture , 2014, EURASIP J. Image Video Process..

[55]  Yan Huang,et al.  Dynamic Texture Recognition via Orthogonal Tensor Dictionary Learning , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[56]  Jukka Komulainen,et al.  The 2nd competition on counter measures to 2D face spoofing attacks , 2013, 2013 International Conference on Biometrics (ICB).

[57]  Anil K. Jain,et al.  Face Spoof Detection With Image Distortion Analysis , 2015, IEEE Transactions on Information Forensics and Security.

[58]  Brian C. Lovell,et al.  Discriminative Non-Linear Stationary Subspace Analysis for Video Classification , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[59]  Martin Szummer,et al.  Temporal texture modeling , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[60]  Matti Pietikäinen,et al.  Face spoofing detection from single images using micro-texture analysis , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[61]  Matti Pietikäinen,et al.  Competition on counter measures to 2-D facial spoofing attacks , 2011, 2011 International Joint Conference on Biometrics (IJCB).

[62]  Lin Sun,et al.  Monocular camera-based face liveness detection by combining eyeblink and scene context , 2011, Telecommun. Syst..

[63]  A. Enis Çetin,et al.  Computer vision based method for real-time fire and flame detection , 2006, Pattern Recognit. Lett..

[64]  Junjie Yan,et al.  A face antispoofing database with diverse attacks , 2012, 2012 5th IAPR International Conference on Biometrics (ICB).

[65]  Xudong Jiang,et al.  Dynamic texture recognition using enhanced LBP features , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[66]  Serge J. Belongie,et al.  Behavior recognition via sparse spatio-temporal features , 2005, 2005 IEEE International Workshop on Visual Surveillance and Performance Evaluation of Tracking and Surveillance.

[67]  Vipin Tyagi,et al.  A novel scheme based on local binary pattern for dynamic texture recognition , 2016, Comput. Vis. Image Underst..

[68]  Lin Sun,et al.  Eyeblink-based Anti-Spoofing in Face Recognition from a Generic Webcamera , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[69]  Francesco G. B. De Natale,et al.  FACE spoofing detection using LDP-TOP , 2016, 2016 IEEE International Conference on Image Processing (ICIP).

[70]  Yi Yang,et al.  Harmonizing Hierarchical Manifolds for Multimedia Document Semantics Understanding and Cross-Media Retrieval , 2008, IEEE Transactions on Multimedia.

[71]  Oksam Chae,et al.  Spatiotemporal Directional Number Transitional Graph for Dynamic Texture Recognition , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[72]  Weixin Xie,et al.  Dynamic Texture Recognition by Spatio-Temporal Multiresolution Histograms , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.

[73]  Jukka Komulainen,et al.  Face Spoofing Detection Using Colour Texture Analysis , 2016, IEEE Transactions on Information Forensics and Security.

[74]  Matti Pietikäinen,et al.  Complementary countermeasures for detecting scenic face spoofing attacks , 2013, 2013 International Conference on Biometrics (ICB).

[75]  Yong Xu,et al.  Dynamic texture classification using dynamic fractal analysis , 2011, 2011 International Conference on Computer Vision.

[76]  Dmitry Chetverikov,et al.  A Brief Survey of Dynamic Texture Description and Recognition , 2005, CORES.

[77]  A. Lakshmi,et al.  DEEP REPRESENTATIONS FOR IRIS , FACE , AND FINGERPRINT SPOOFING DETECTION , 2017 .

[78]  W. Ali,et al.  Visual tree detection for autonomous navigation in forest environment , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[79]  Leon A. Gatys,et al.  Texture Synthesis Using Convolutional Neural Networks , 2015, NIPS.

[80]  Hong Liu,et al.  A Novel Lip Descriptor for Audio-Visual Keyword Spotting Based on Adaptive Decision Fusion , 2016, IEEE Transactions on Multimedia.

[81]  A. Fitzgibbon Stochastic rigidity: image registration for nowhere-static scenes , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[82]  René Vidal,et al.  View-invariant dynamic texture recognition using a bag of dynamical systems , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[83]  Zhiyong Yuan,et al.  Dynamic texture based smoke detection using Surfacelet transform and HMT model , 2015 .

[84]  Odemir Martinez Bruno,et al.  Spatiotemporal Gabor filters: a new method for dynamic texture recognition , 2012, ArXiv.

[85]  Chih-Jen Lin,et al.  LIBSVM: A library for support vector machines , 2011, TIST.

[86]  Matti Pietikäinen,et al.  Dynamic texture and scene classification by transferring deep image features , 2015, Neurocomputing.