Modeling and implementation of local volatility surfaces in Bayesian framework

In this study, we focus on the reconstruction of volatility surfaces via a Bayesian framework. Apart from classical methods, such as, parametric and non-parametric models, we study the Bayesian analysis of the (stochastically) parametrized volatility structure in Dupire local volatility model. We systematically develop and implement novel mathematical tools for handling the classical methods of constructing local volatility surfaces. The most critical limitation of the classical methods is obtaining negative local variances due to the ill-posedness of the numerator and/or denominator in Dupire local variance equation. While several numerical techniques, such as Tikhonov regularization and spline interpolations have been suggested to tackle this problem, we follow a more direct and robust approach. With the Bayesian analysis, choosing a suitable prior on the positive plane eliminates the undesired negative local variances.

[1]  B. Dumas,et al.  Implied volatility functions: empirical tests , 1996, IEEE Conference on Computational Intelligence for Financial Engineering & Economics.

[2]  Ralph C. Smith,et al.  Uncertainty Quantification: Theory, Implementation, and Applications , 2013 .

[3]  Jesper Andreasen,et al.  Jump-Diffusion Processes: Volatility Smile Fitting and Numerical Methods for Pricing , 1999 .

[4]  A. Marsden,et al.  Use of Bayesian Estimates to determine the Volatility Parameter Input in the Black-Scholes and Binomial Option Pricing Models , 2011 .

[5]  Stéphane Crépey,et al.  Calibration of the Local Volatility in a Generalized Black-Scholes Model Using Tikhonov Regularization , 2003, SIAM J. Math. Anal..

[6]  A. N. Tikhonov,et al.  REGULARIZATION OF INCORRECTLY POSED PROBLEMS , 1963 .

[7]  Christoph Reisinger,et al.  Robust calibration of financial models using Bayesian estimators , 2014 .

[8]  Matthias R. Fengler Arbitrage-free smoothing of the implied volatility surface , 2009 .

[9]  Ben G. Fitzpatrick,et al.  Bayesian analysis in inverse problems , 1991 .

[10]  O. Scherzer,et al.  Convex regularization of local volatility models from option prices: Convergence analysis and rates , 2012 .

[11]  Torsten Hein Some Analysis of Tikhonov Regularization for the Inverse Problem of Option Pricing in the Price-Dependent Case , 2005 .

[12]  Endre Süli,et al.  Computation of Deterministic Volatility Surfaces , 1998 .

[13]  S. Heston A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options , 1993 .

[14]  Herbert Egger,et al.  On decoupling of volatility smile and term structure in inverse option pricing , 2006 .

[15]  Henri Berestycki,et al.  Asymptotics and calibration of local volatility models , 2002 .

[16]  Stanley Osher,et al.  A technique for calibrating derivative security pricing models: numerical solution of an inverse problem , 1997 .

[17]  H. Engl,et al.  Convergence rates for Tikhonov regularisation of non-linear ill-posed problems , 1989 .

[18]  Otmar Scherzer,et al.  Inverse Problems Light: Numerical Differentiation , 2001, Am. Math. Mon..

[19]  H. Engl,et al.  Regularization of Inverse Problems , 1996 .

[20]  Alan G. White,et al.  The Pricing of Options on Assets with Stochastic Volatilities , 1987 .

[21]  M. Hanke,et al.  COMPUTATION OF LOCAL VOLATILITIES FROM REGULARIZED DUPIRE EQUATIONS , 2005 .

[22]  R. C. Merton,et al.  Option pricing when underlying stock returns are discontinuous , 1976 .

[23]  M. Rubinstein. Implied Binomial Trees , 1994 .

[24]  V. Isakov,et al.  TOPICAL REVIEW: Uniqueness, stability and numerical methods for the inverse problem that arises in financial markets , 1999 .